Skip to main content
Log in

Enhanced lower-order element formulations for large strains

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The paper describes a range of lower-order element formulations that can be applied to both elastic and elasto-plastic large-strain elements. For plane-strain analysis, this process involves four-noded quadrilaterals while the enhancements involve incompatible modes or enhanced strains. One particular new formulation can be considered as either a “co-rotational approach” or a modified form of “Biot stress procedure”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andelfinger, U.; Ramm, E.; Roehl, D. 1993: 2D-and 3D-enhanced assumed strain elements and their application in plasticity. In: Owen, D. R. J. et al. (ed): Computational Plasticity, Fundamentals and Applications, Pineridge Press

  • Argyris, J. H.; Balmer, H.; Soltsinis, J. S.; Dunne, P. C.; Haase, M.; Kleiber, M.; Malejannakis, G. A.; Mlejnek, H. P.; Müller, M.; Scharpf, D. W. 1979: Finite element method-the natural approach. Comp. Meth. Appl. Mech. Engng. 17/18: 1–106

    Google Scholar 

  • Atluri, S. N. 1984: On constitutive relations at finite strain: hypoelasticity and elasto-plasticity with isotropic or kinematic hardening. Comp. Meth. Appl. Mech. Engng. 46: 201–215

    Google Scholar 

  • Atluri, S. N. 1986: An endochronic approach and other topics in small and finite deformation computational elasto-plasticity. In: Bergan, P. et al. (ed). Finite Element Methods for Nonlinear Problems, pp. 143–162, Berlin: Springer

    Google Scholar 

  • Bathe, K-J.; Slavković, R.; Kojić, M. 1986: On large strain elasto-plastic and creep analysis. In: Bergan, P. et al. (ed): Finite Element Methods for Nonlinear Problems, pp. 175–189. Berlin: Springer

    Google Scholar 

  • Belytschko, T.; Hsieh, B. J. 1973: Non-linear transient finite element analysis with convected co-ordinates. Int. J. Num. Meth. Engng. 7: 255–271

    Google Scholar 

  • Crisfield, M. A. 1991: Non-linear Finite Element Analysis of Solids and Structures. Chichester: John Wiley & Sons

    Google Scholar 

  • Crisfield, M. A.; Moita, G. F. 1994: A co-rotational formulation for 2-D continua including incompatible modes. Int. J. Num. Meth. Engng. (submitted)

  • Crisfield, M. A.; Moita, G. F. 1995: Co-rotational and Biot-like formulations for the non-linear analysis of continua. To be presented at FEMSA 95

  • Cuitiño, A.; Ortiz, M. 1992: A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Engineering Computations. 9: 437–451

    Google Scholar 

  • Eterovic, A. L.; Bathe, K-J. 1990: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using logarithmic stress and strain measures. Int. J. Num. Meth. Engng. 30: 1099–1114

    Google Scholar 

  • Hibbitt, H. D.; Marcal, P. V.; Rice, J. R. 1970: A finite element formulation for problems of large strain and large displacement. Int. J. Solids Struct. 6: 1069–1086

    Google Scholar 

  • Jetteur, P. H.; Cescotto, S. 1991: A mixed finite element for the analysis of large inelastic strains. Int. J. Num. Meth. Engng. 31: 229–239

    Google Scholar 

  • McMeeking, R. M.; Rice, J. R. 1975: Finite element formulation for problems of large elastic-plastic deformation. Int. J. Solids Struct. 11: 601–611

    Google Scholar 

  • Moita, G. F. 1994: Non-linear finite element analysis of continua with emphasis on hyperelasticity, Ph.D. Thesis, Imperial College, London

    Google Scholar 

  • Moss, W. C. 1984: On instabilities in large deformation simple shear loading. Comp. Meth. Appl. Mech. Engng. 46: 329–338

    Google Scholar 

  • Needleman, A. 1985: On finite element formulations for large elastic-plastic deformations. Comput. Struct. 20: 247–257

    Google Scholar 

  • Perić, D.; Owen, D. R. J.; Honnor, M. E. 1992: A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues. Comp. Meth. Appl. Mech. Engng. 94: 35–61

    Google Scholar 

  • RolphIII, W. D.; Bathe, K-J. 1984: On a large strain finite element formulation for elasto-plastic analysis. In: Willam, K. J. (ed): Constitutive Equations: Macro and Computational Aspects, pp. 131–147, New York: AMD, ASME

    Google Scholar 

  • Simo, J. C. 1992: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comp. Meth. Appl. Mech. Engng. 99: 61–112

    Google Scholar 

  • Simo, J. C.; Armero, F. 1992: Geometric non-linear enhanced strain mixed method and the method of incompatible modes. Int. J. Num. Meth. Engng. 33: 1413–1449

    Google Scholar 

  • Simo, J. C.; Armero, F.; Taylor, R. L. 1993: Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comp. Meth. Appl. Mech. Engng. 110: 359–386

    Google Scholar 

  • Simo, J. C.; Ortiz, M. 1985: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comp. Meth. Appl. Mech. Engng. 49: 221–245

    Google Scholar 

  • Simo, J. C.; Rifai, M. S. 1990: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Num. Meth. Engng. 29: 1595–1638

    Google Scholar 

  • Simo, J. C.; Taylor, R. L. 1991: Quasi-incompressible elasticity in principal stretches; continuum basis and numerical algorithms. Comp. Meth. Appl. Mech. Engng. 85: 273–310

    Google Scholar 

  • Taylor, R. L.; Beresford, P. J.; Wilson, E. L. 1976: A non-conforming element for stress analysis. Int. J. Num. Meth. Engng. 10: 1211–1219

    Google Scholar 

  • Wempner, G. 1969: Finite elements, finite rotations and small strains of flexible shells. Int. J. Solids Struct. 5: 117–153

    Google Scholar 

  • Wriggers, P.; Crisfield, M. A.; Moita, G. F. 1995: An enhanced element formulation for large elastic deformations using Biot stresses. Paper in preparation

  • Wriggers, P.; Reese, S. 1994: A note on enhanced strain method for large deformations. Comp. Meth. Appl. Mech. Engng. (submitted)

  • Yamada, T.; Kikuchi, F. 1993: An arbitrary lagrangian-eulerian finite element method for incompressible hyperelasticity. Comp. Meth. Appl. Mech. Engng. 102: 149–177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 18 August 1995

Dedicated to J. C. Simo

Some of the concepts that are described in this paper evolved as a result of a sabbatical visit to Imperial College by Professor Peter Wriggers. We would like to thank Professor Wriggers for his important contributions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crisfield, M.A., Moita, G.F., Lyons, L.P.R. et al. Enhanced lower-order element formulations for large strains. Computational Mechanics 17, 62–73 (1995). https://doi.org/10.1007/BF00356479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356479

Keywords

Navigation