Marine Biology

, Volume 112, Issue 3, pp 479–484 | Cite as

Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea

  • Roel Riegman
  • Anna A. M. Noordeloos
  • Gerhard C. Cadée


It is suggested that novel nuisance algal blooms can result from major shifts in N/P or NH4+/NO3- ratios. Inland hydraulic engineering caused a shift from P-limitation (before 1977) towards N-limitation (after 1977) in the Marsdiep area (Dutch coastal waters). Following this shift the colonial flagellate Phaeocystis sp. became more abundant and started to bloom during the nutrient-controlled period (later spring to autumn). Competition experiments showed that the N/P ratio can influence the species composition of marine phytoplankton. In addition, the natural distribution of some species like Rhodomonas sp. and Emiliania huxleyi may be affected by the frequency of nutrient pulses in the system. Phaeocystis was a poor competitor under P-limitation and a good competitor under N-limitation. Colony formation was absent under P- and NH4+-limitation. Colonies were formed under NO3--limitation. These preliminary results suggest that colony-forming Phaeocystic blooms may be restricted (besides light-controlled environments) to those N-controlled environments where nitrate is consumed by Phaeocystis. The distribution of Phaeocystis along the European continental coast is evaluated on the basis of its ability to compete for nutrients and to form colonies when nitrate is the major N-source.


Phytoplankton German Bight Emiliania Huxleyi Poor Competitor Ditylum Brightwellii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Admiraal, W., van Zanten, B., de Ruyter van Steveninck, E. (1990). Biological and chemical processes in communities of bacteria, phytoplankton and zooplankton in the lower river Rhine. In: Kinzelbach, R., Friedrich, G. (eds.) Biologie des Rheins. Gustav Fischer Verlag, Stuttgart, p. 151–160Google Scholar
  2. Bennekom, A. J. van, Gieskes, W. W. C., Tijssen, S. B. (1975). Eutrophication of Dutch coastal waters. Proc. R. Soc. (Ser. B) 189: 359–374CrossRefGoogle Scholar
  3. Billen, G., Somville, M., De Becker, E., Servais, P. (1985). A nitrogen budget of the Scheldt hydrographical basin. Neth. J. Sea Res. 19 (3/4): 223–230CrossRefGoogle Scholar
  4. Cadée, G. C. (1986). Recurrent and changing seasonal patterns of phytoplankton in the westernmost inlet of the Wadden Sea from 1969 to 1985. Mar. Biol. 93: 281–289CrossRefGoogle Scholar
  5. Cadée, G. C. (1990). Increase of Phaeocystis blooms in the westernmost inlet of the Wadden Sea, the Marsdiep, since 1973. In: Lancelot, C., Billen, G., Barth, H. (eds.) Water pollution research report 12. Commission of the European Communities, Luxembourg, p. 105–112Google Scholar
  6. Cadée, G. C., Hegeman, J. (1986). Seasonal and annual variation in Phaeocystis pouchetii (Haptophyceae) in the westernmost inlet of the Wadden Sea during the 1973 to 1985 period. Neth. J. Sea Res. 20: 29–36CrossRefGoogle Scholar
  7. Cadée, G. C., Hegeman, J. (1991). Historical phytoplankton data for the Marsdiep. Hydrobiol. Bull. 24(2):111–119CrossRefGoogle Scholar
  8. Gerlach, S. A. (1990) Nitrogen, phosphorus, plankton and oxygen deficiency in the German Bight and in Kiel Bay. Kieler Meeresforsch. 7: 341 pp.Google Scholar
  9. Haumann, L. (1989). Algal blooms. In: Barth, H., Nielsen, A. (eds.) Water pollution research report 10. Commission of the European Communities, Luxembourg, p. 9–19Google Scholar
  10. Lancelot, C., Billen, G., Sournia, A., Weisse, T., Colijn, F., Veldhuis, M. W. J., Davies, A., Wassman, P. (1987). Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambio 16: 38–46Google Scholar
  11. Lancelot, C., Mathot, S. (1985). Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short- and long-term incubations with 14C-bicarbonate. Mar. Biol. 86: 227–232CrossRefGoogle Scholar
  12. Lancelot, C., Mathot, S., Owens, N. J. P. (1986). Modelling protein synthesis, a step to an accurate estimate of primary production: the case of Phaeocystic pouchetii colonies in Belgian coastal waters. Mar. Ecol. Prog. Ser. 32: 193–202CrossRefGoogle Scholar
  13. Nelissen, P. H. M., Stefels, J. (1988). Eutrophication in the North Sea. Netherlands Institute for Sea Research. Report 4, Den Burg, The NetherlandsGoogle Scholar
  14. Radach, G., Berg, J., Hagmeier, E. (1990). Long-term changes of the annual cycles of meteorological, hydrographic, nutrient and phytoplankton time series at Helgoland and at LV BLBE 1 in the German Bight. Contin. Shelf Res. 10: 305–328CrossRefGoogle Scholar
  15. Reid, P. C., Lancelot, C., Gieskes, W. W. C., Hagmeier, E., Weichart, G. (1990). Phytoplankton of the North Sea and its dynamics: a review. Neth. J. Sea Res. 26: 295–331CrossRefGoogle Scholar
  16. Schaub, B. E. M., Gieskes, W. W. C. (1991). Eutrophication of the North Sea: the relation between Rhine river discharge and chlorophyll a concentration in Dutch coastal waters. In: Elliot, M., Ducrotoy, J. P. (eds.) Estuaries and coasts: spational and temporal intercomparisons. Olsen and Olsen, Denmark, p. 85–90Google Scholar
  17. Smayda, T. J. (1990). Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli, E., Sundström, B., Edler, L., Anderson, D. M. (eds.) Toxic marine phytoplankton. Elsevier Science Publishing Co., Inc., Amsterdam, p. 29–41Google Scholar
  18. Utermöhl, H. (1958). Vervollkommnung der quantitiven Phytoplankton-Methodik. Mitt. int. Verein. theor. angew. Limnol. 9: 1–38Google Scholar
  19. Veer, H. W. van der, Van Raaphorst, W., Bergman, M. J. N. (1989). Eutrophication of the Dutch Wadden Sea: external nutrients loadings of the Marsdiep and Vliestroom basin. Helgoländer Meeresunters. 43: 501–515CrossRefGoogle Scholar
  20. Veldhuis, M. J. W., Admiraal, W. (1987). Influence of phosphate depletion on the growth and colony formation of Phaeocystis puchetii (Hariot) Lagerheim. Mar. Biol. 95: 47–54CrossRefGoogle Scholar
  21. Verity, P. G., Smayda, T. J. (1989). Nutritional value of Phaeocystis pouchetii (Prymnesiophyceae) and other phytoplankton for Acartia spp. (Copepoda): ingestion, egg production, and growth of nauplii. Mar. Biol. 100: 161–171CrossRefGoogle Scholar
  22. Weisse, T., Scheffel-Möser, U. (1990). Growth and grazing loss rates in single-celled Phaeocystis sp. (Prymnesiophyceae). Mar. Biol. 106: 153–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Roel Riegman
    • 1
  • Anna A. M. Noordeloos
    • 1
  • Gerhard C. Cadée
    • 1
  1. 1.Netherlands Institute for Sea ResearchDen BurgThe Netherlands

Personalised recommendations