Philosophical Studies

, Volume 64, Issue 1, pp 37–64 | Cite as

Inductive learning by machines

  • Stuart Russell
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, L. and Blum, M. 1975, ‘Toward a mathematical theory of inductive inference’. Information and Control, 28, 125–155.Google Scholar
  2. Buchanan, B. G. and Mitchell, T. M. 1978, ‘Model-directed learning of production rules’, Waterman, D. A. and Hayes-Roth, F., (Eds.) Pattern-directed inference systems (Academic Press, New York).Google Scholar
  3. De Jong, G. 1981, ‘Generalizations based on explanations’, Proceedings of the Seventh International Joint Conference on Artificial Intelligence (Morgan Kaufmann, Vancouver, BC), pp. 67–69.Google Scholar
  4. Dietterich, T. G. 1986, ‘Learning at the knowledge level’, Machine Learning, 1(3).Google Scholar
  5. Einstein, A. 1936, ‘Physics and reality’, Journal of the Franklin Institute, 221.Google Scholar
  6. Feyerabend, P. 1970, Against method (New Left Books, London).Google Scholar
  7. Gold, E. M. 1967, ‘Language identification in the limit’, Information and Control, 10, pp. 447–474.Google Scholar
  8. Goodman, N. 1955, Fact, fiction and forest (Harvard University Press, Cambridge, MA).Google Scholar
  9. Hesse, M. 1980, Revolutions and reconstructions in the philosophy of science (Indiana University Press, Bloomington).Google Scholar
  10. Kemeny, J. G. 1953, ‘The use of simplicity in induction’, Philosophical Review, 62, pp. 391–408.Google Scholar
  11. Kolmogorov, A. N. 1965, ‘Three approaches to the quantitative definition of information’, Problems in Information Transmission, 1(1), pp. 1–7.Google Scholar
  12. Kuhn, T. S. 1970, The structure of scientific revolutions (Chicago University Press, Chicago, IL).Google Scholar
  13. Lakatos, I., and Musgrave, A. (Eds.), 1968, Problems in the philosophy of science. (North Holland, Amsterdam).Google Scholar
  14. Li, M., and Vitanyi, P. M. B. 1989, An introduction to Kolmogorov complexity and its applications (ACM Press, New York).Google Scholar
  15. Miller, D. 1974, ‘Popper's qualitative theory of verisimilitude’, British Journal for the Philosophy of Science, 25, pp. 178–88.Google Scholar
  16. Mitchell, Tom M. 1982, ‘Generalization as search’, Artificial Intelligence, 18(2), 203–226.Google Scholar
  17. Mitchell, T. M., Keller, R. M. & Kedar-Cabelli, S. T. 1986, ‘Explanation-based generalization: A unifying view’, Machine Learning, 1, 47–80.Google Scholar
  18. Muggleton, S. H. 1988, ‘A strategy for constructing new predicates in first-order logic’, Proceedings of the Third European Working Session on Learning (Pitman, Glasgow, Scotland), pp. 123–130.Google Scholar
  19. Muggleton, S. H. and Buntine, W. 1988, ‘Machine invention of first-order predicates by inverting resolution’, In Proceedings of the Fifth International Machine Learning Conference (Morgan Kaufmann, Ann Arbor, Michigan).Google Scholar
  20. Newton-Smith, W. H. 1981, The rationality of science (Routledge and Kegan Paul, London).Google Scholar
  21. Pearl, J. 1978, ‘On the connection between the complexity and credibility of inferred models’, International Journal of General Systems, 4, pp. 255–64.Google Scholar
  22. Pollock, J. L. 1986, Contemporary theories of knowledge. (Rowman and Littlefield, Totowa, NJ).Google Scholar
  23. Pollock, J. L. 1990, Nomic probability and the foundations of induction. (Oxford University Press).Google Scholar
  24. Popper, K. R. 1968a, The logic of scientific discovery. (Hutchinson, London).Google Scholar
  25. Popper, K. R. 1968b, ‘Is there an epistemological problem of perception?’, (Lakatos & Musgrave, 1968), pp. 163–4.Google Scholar
  26. Quine, W. v. O. 1960, Word and object (MIT Press, Cambridge, MA).Google Scholar
  27. Quine, W. v. O. & Ullian J. S. 1970, The web of belief (Random House, New York).Google Scholar
  28. Rivest, R. L. and Schapire, R. E. 1987, ‘A new approach to unsupervised learning in deterministic environments’, Proceedings of the Fourth International Workshop on Machine Learning (Morgan Kaufmann, Irvine, CA).Google Scholar
  29. Robinson, J. A. 1965, ‘A machine-oriented logic based on the resolution principle’, Journal of the ACM, 12(1), pp. 23–40.Google Scholar
  30. Russell, S. J. 1986, ‘Preliminary steps toward the automation of induction’, Proceedings of the Fifth National Conference on Artificial Intelligence (Morgan Kaufmann, Philadelphia, PA).Google Scholar
  31. Russell, S. J. 1988, ‘Tree-structured bias’, Proceedings of the Seventh National Conference on Artificial Intelligence (Morgan Kaufmann, Minneapolis, MN).Google Scholar
  32. Russell, S. J. 1989, The use of knowledge in analogy and induction (Pitman, London).Google Scholar
  33. Solomonoff, R. J. 1964, ‘A formal theory of inductive inference (parts I and II)’, Information and Control, 7, pp. 1–22, 224–54.Google Scholar
  34. Suppes, P. 1968, ‘Information processing and choice behaviour’, (Lakatos & Musgrave, 1968), pp. 278–99.Google Scholar
  35. Tichy, P. 1974, ‘On Popper's definition of verisimilitude’, British Journal for the Philosophy of Science, 25, pp. 155–60.Google Scholar
  36. Valiant, L. G. 1984, ‘A theory of the learnable’, Communications of the ACM, 27, pp. 1134–1142.Google Scholar
  37. Warmuth, M. (Ed.), 1989, Proceedings of the Second International Workshop on Computational Learning Theory (Morgan Kaufmann, Santa Cruz, CA).Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Stuart Russell
    • 1
  1. 1.Computer Science DivisionUniversity of CaliforniaBerkeleyUSA

Personalised recommendations