Journal of Materials Science

, Volume 29, Issue 15, pp 4131–4133 | Cite as

Chemical preparation, direct-current conductivity and thermopower of polyaniline and polypyrrole composites

  • E. Dalas
  • S. Sakkopoulos
  • E. Vitoratos


Polyaniline and polypyrrole composites were synthesized by doping during polymerization with a variety of organic and inorganic groups. Their direct-current (d.c.) conductivity was measured and their activation energy was estimated at room temperature. From thermopower measurements on polypyrrole composites a “metallic” p-type conductivity in the fibrils was revealed, although for polyaniline an n-type to p-type change of the carriers into the metallic “islands” was displayed at about 320 K. The introduction of the various groups, in addition to this change in the electrical properties, also resulted in conducting polymers capable of surface complexation with metal ions.


Polymer Activation Energy Fibril Electrical Property Polyaniline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. S. Huang, B. D. Humphrey and A. G. Macdiarmid, J. Chem. Soc. Faraday Trans. 182 (1986) 2385.CrossRefGoogle Scholar
  2. 2.
    S. Rapi, V. Bocchi and G. P. Gardini, Synth. Met. 24 (1988) 217.CrossRefGoogle Scholar
  3. 3.
    J. Kallitsis, E. Koumanakos, E. Dalas, S. Sakkopoulos and P. G. Koutsoukos, J. Chem. Soc., Chem. Commun. 16 (1989) 1146.CrossRefGoogle Scholar
  4. 4.
    A. J. Heeger, S. Kivelson, J. R. Schriefeer and W. P. Su, Rev. Mod. Phys. 60 (1988) 781.CrossRefGoogle Scholar
  5. 5.
    Y. W. Park, A. Denestein, C. K. Chiang, A. J. Heeger and A. G. Macdiarmid, Solid State Commun. 29 (1979) 747.CrossRefGoogle Scholar
  6. 6.
    A. B. Kaiser, Phys, Rev, B 40 (1989) 2806.CrossRefGoogle Scholar
  7. 7.
    F. Mott and E. A. Davis, “Electronic processes in noncrystalline materials” 2nd Edn (Clarendon, Oxford, 1979).Google Scholar
  8. 8.
    J. Kallitsis and A. Tsolis, J. Appl. Polym. Sci. 31 (1986) 635.CrossRefGoogle Scholar
  9. 9.
    D. S. Maddison, R. B. Roberts and J. Unsworth Synth. Met. 33 (1989) 281.CrossRefGoogle Scholar
  10. 10.
    M. Nechtschein, F. Genoud, C. Menardo, K. Mizoquchi, J. P. Travers and B. Villenet, ibid. 29 (1989) E211.CrossRefGoogle Scholar
  11. 11.
    Ping Sheng, A. Abeles and Y. Arie, Phys. Rev. Lett. 31 (1973) 44.CrossRefGoogle Scholar
  12. 12.
    J. Stuke, Non-Cryst. Solids 4 (1970) 1.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • E. Dalas
    • 1
  • S. Sakkopoulos
    • 2
  • E. Vitoratos
    • 2
  1. 1.Department of ChemistryUniversity of PatrasPatrasGreece
  2. 2.Department of PhysicsUniversity of PatrasPatrasGreece

Personalised recommendations