Journal of Materials Science

, Volume 29, Issue 15, pp 4001–4006 | Cite as

FeCl3 doped polyvinylidene fluoride

Part II Pauli susceptibility and microwave response
  • A. Tawansi
  • H. I. Abdel-Kader
  • W. Balachandran
  • E. M. Abdel-Razek


Magnetic susceptibility measurements of FeCl3 doped polyvinylidene fluoride (PVDF) films over the dopant mass fraction range 0 ⩽ W ⩽ 0.45 (wt%) and the temperature, T, range 85–300 K are presented. Undoped PVDF exhibited temperature independent Pauli paramagnetic (TIPP) susceptibility at 150 ⩽ T ⩽ 300 K, which was followed by an antiferromagnetic Neel peak at TN = 120 K. In the case of doped PVDF, TIPP susceptibility was followed by a Curie-Wiss temperature dependence with a positive paramagnetic Curie point, indicating ferromagnetic interaction at lower temperatures. The onset of TIPP was attributed to one-dimensional magnetic interaction of itinerant states close to the Fermi surface. It is implied that the [C2H2F2(FeCl4)y(FeCl2)yClz]x complex was formed by doping. A chlorination model was proposed to calculate the stoichiometric coefficients y and z, using magnetic susceptibility data. The microwave response of the doped PVDF has been examined. It is found that changing the doping level results in composites of different reflection coefficient phase and power reflection factors.


Magnetic Susceptibility PVDF Reflection Coefficient Fermi Surface Curie Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Brédas, B. Thémans, J. M. André, R. R. Chance, D. S. Boudreaux and R. Silbey, J. De Physique 44 (1983) 373.Google Scholar
  2. 2.
    A. Tawansi, H. I. Abdel-Kader, M. El-Zalabany and E. M. Abdel-Razek, J. Mater. Sci. (1993) Part I of this paper, in press.Google Scholar
  3. 3.
    D. K. Das-Gupta, K. Doughty and R. S. Broekley, J. Phys. D: Appl. Phys. 13 (1980) 2101.CrossRefGoogle Scholar
  4. 4.
    P. Hedvig, “Dielectric Spectroscopy of Polymers” (Adam Hilger, Bristol, 1977) p. 76.Google Scholar
  5. 5.
    S. Eliasson, J. Phys. D: Appl. Phys. 18 (1985) 275.CrossRefGoogle Scholar
  6. 6.
    T. Mizutani, T. Yamada and M. Ieda, ibid. 14 (1981) 1139.CrossRefGoogle Scholar
  7. 7.
    Y. Oka and N. Koizumi, Polym. J. 14 (1982) 869.CrossRefGoogle Scholar
  8. 8.
    D. K. Das-Gupta and K. Doughty, in Proceedings of the International Conference on Dielectric Materials (Institute of Electrical Engineers, Conference Publication No. 177, 1979) p. 242.Google Scholar
  9. 9.
    B. R. Weinberger, J. Kaufer, A. J. Heeger, A. Pron and A. G. MacDiarmid, Phys. Riv. B. 20 (1979) 1.Google Scholar
  10. 10.
    A. Tawansi and H. M. Zidan, J. Phys. D: Appl. Phys. 23 (1990) 1320.CrossRefGoogle Scholar
  11. 11.
    Idem., Int. J. Polym. Materials 15 (1991) 77.CrossRefGoogle Scholar
  12. 12.
    L. O. Snively, P. I. Serifert, K. Emerson and J. E. Drumheller, Phys. Riv. B 20 (1979) 2101.CrossRefGoogle Scholar
  13. 13.
    H. Kobayashi, T. Haseda, E. Kanda and S. Kanda, J. Phys. Soc. Japan 18 (1963) 349.CrossRefGoogle Scholar
  14. 14.
    S. Roth, K. Ehinger, K. Menke, M. Peo and R. J. Schweizer, J. De Physique 44 (1983) C 3–69.Google Scholar
  15. 15.
    R. Hasegawa, M. Kobayashi and H. Tadokoro, Polym. J. 3 (1972) 591, 600.CrossRefGoogle Scholar
  16. 16.
    A. J. Lovinger, in “Developments in Crystalline Polymers”, Vol. 1, edited by D. C. Bassett (Applied Science, London, 1982) Chapter 5.Google Scholar
  17. 17.
    R. Zhang and P. L. Taylor, J. Chem. Phys. 94 (1991) 3207.CrossRefGoogle Scholar
  18. 18.
    M. Kobayashi, K. Tashiro and H. Tadokoro, Macromol. 8 (1975) 158.CrossRefGoogle Scholar
  19. 19.
    D. K. Das-Gupta and K. Doughty, Appl. Phys. Lett. 31 (1977) 585.CrossRefGoogle Scholar
  20. 20.
    A. G. MacDiarmid and T. C. Chung, J. De Physique 44 (1983) 513.CrossRefGoogle Scholar
  21. 21.
    N. N. Tyutyulkov, O. E. Polansky, P. Schuster, S. H. Karabunarliv and C. I. Ivanov, Theoret. Chem. Acta 67 (1985) 211.CrossRefGoogle Scholar
  22. 22.
    H. Shirakawa and T. Kobayashi, J. De Physique 44 (1983) C 3–3.Google Scholar
  23. 23.
    A. Pron, D. Billaud, I. Kulszewicz, C. Budrowski, J. Przyluski and J. Suqalski, Mater. Res. Bull. 16 (1981) 1229.CrossRefGoogle Scholar
  24. 24.
    F. Benier and S. Pekker, Solid State Commun. 57 (1986) 835.CrossRefGoogle Scholar
  25. 25.
    G. Foex, “Constanes Selectionees de Dia et Paramahnetisme” (Masson, Paris, 1957) p. 103.Google Scholar
  26. 26.
    S. Flandrois, A. Boukhari, A. Pron and M. Zagorska, Solid State Commun. 67 (1988) 471.CrossRefGoogle Scholar
  27. 27.
    O. Hudak, Czech. J. Phys. B 35 (1985) 1303.CrossRefGoogle Scholar
  28. 28.
    A. Tawansi, N. Kinawy and M. El-Mitwally, J. Mater. Sci. 24 (1989) 2497.CrossRefGoogle Scholar
  29. 29.
    N. T. Abdel-Ghani, A. Tawansi and S. A. Abdellatif, Bull. Soc. Chem. Fr. 127 (1990) 188.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Tawansi
    • 1
  • H. I. Abdel-Kader
    • 1
  • W. Balachandran
    • 1
    • 2
  • E. M. Abdel-Razek
    • 1
  1. 1.Physics Department, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Department of Electronic and Electrical EngineeringUniversity of SurreyGuilfordUK

Personalised recommendations