Journal of Materials Science

, Volume 29, Issue 15, pp 3984–3992 | Cite as

The relevance of the surface structure and surface chemistry of carbon fibres in their adhesion to high temperature thermoplastics

Part III Interface adhesion and reinforcement effects
  • G. Krekel
  • U. J. Zielke
  • K. J. Hüttinger
  • W. P. Hoffman


This paper has three principle thrusts: (i) the fabrication of unidirectionally reinforced composites made from carbon fibres subjected to different surface treatments in combination with various (polycarbonate, polyethersulphone and epoxy) matrices, (ii) a study of some of the mechanical properties (that is, the interlaminar-shear strength (ILSS) and the failure behaviour) of these composites; and (iii) determination of the correlations between the adhesion of the matrix polymers as measured by the ILSS and the surface structure as well as the surface chemistry of the various fibres. It will be shown that the surface structure of the fibres has a minor effect, while the surface chemistry appears to have an extraordinarily great influence on the adhesion of the fibres to high-temperature thermoplastics. The data clearly show that, depending on the processing temperature during the fabrication of the composites, chemical bonds can be formed at the fibre-polymer interface. This bond formation is initiated by the decomposition of carboxylic groups and, as a consequence, dangling carbon atoms are free to react with the functional groups of the polymer.


Polymer Mechanical Property Epoxy Carbon Atom Matrix Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Herrera-Franco and L. T. Drzal, Composites 23 (1992) 2–27.CrossRefGoogle Scholar
  2. 2.
    A. Hampe in “Haftung bei verbundwerkstoffen and werkstoffverbunden” (DGM Informationsgesellschaft mbH, Oberursel, 1989) pp. 33–44.Google Scholar
  3. 3.
    F. P. Gerstle in “Encyclopedia of polymer science and engineering”, edited by H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges and J. I. Kroschwitz. Vol. 3, (Wiley, New York, 1988) pp. 776–820.Google Scholar
  4. 4.
    G. Krekel, K. J. Hüttinger, W. P. Hoffman and D. S. Silver, J. Mater. Sci. in press.Google Scholar
  5. 5.
    G. Krekel, K. J. Hüttinger and W. P. Hoffman, ibid. in press.Google Scholar
  6. 6.
    CIBA-GEIGY AG, Product information: Araldit LY556, Basel (1988).Google Scholar
  7. 7.
    S. W. Yurgatis and S. S. Sternstein, J. Mater. Sci. 23 (1988) 1861–1870.CrossRefGoogle Scholar
  8. 8.
    G. Krekel, PhD thesis, University of Karlsruhe (1992).Google Scholar
  9. 9.
    K. J. Hüttinger, S. Höhmann-Wien and G. Krekel, Carbon 29 (1991) 1281–1286.CrossRefGoogle Scholar
  10. 10.
    Idem. J. Adhesion Sci. Tech. 6 (1992), 317–331.CrossRefGoogle Scholar
  11. 11.
    N. L. Allinger, M. P. Cava, D. C. De Jongh, C. R. Johnson, N. A. Lebel and C. L. Stevens, “Organische chemie” (de Gruyter, Berlin, 1980) pp. 825–830.CrossRefGoogle Scholar
  12. 12.
    P. W. Atkins, “Physikalische chemie”, 1st Edn, Verlag Chemie, Weinheim (1987), 598–602; and Idem. Carbon 28 (1990) 221–228.Google Scholar
  13. 13.
    E. Fitzer and R. Weiss, Carbon 25 (1987) 455.CrossRefGoogle Scholar
  14. 14.
    P. Ehrburger, J. J. Herque and J. B. Donnet, London, Soc. Chem. Ind 1 (1978) 398.Google Scholar
  15. 15.
    E. Fitzer, K. H. Geigl, W. Hüttner and R. Weiss, Carbon 18 (1980) 389–393.CrossRefGoogle Scholar
  16. 16.
    J. Matsui, Crit. Rev. Surface Chem. 1 (1990) 71–130.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • G. Krekel
    • 1
  • U. J. Zielke
    • 1
  • K. J. Hüttinger
    • 1
  • W. P. Hoffman
    • 2
  1. 1.Institute für Chemische TechnikUniversität KarlsruheKarlsruheGermany
  2. 2.Phillips LaboratoryOLAC PL/RKFEEdwards Air Force Base, EdwardsUSA

Personalised recommendations