Skip to main content
Log in

The structure of the mouse parvalbumin gene

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Parvalbumin (PV) is a calcium-binding protein of the EF-hand family, expressed mainly in fast contracting/relaxing muscles of vertebrates. We have isolated five overlapping genomic PV clones which overall span 28 kilobase pairs (kb) around the Pva locus on mouse Chromosome (Chr) 15. The positions of four introns were determined by DNA sequencing. They interrupt the coding sequences at positions corresponding to those in rat and human PV genes.

The transcription start site, 25 bp downstream from the TATA-box, was mapped by oligonucleotide primer extension on poly(A)+-RNA. The analysis of 0.4 kb promoter sequence of the mouse PV gene revealed CCAAT- and TATA-box sequences and a 59 bp GC-rich stretch between positions-59 and-118. Similar motifs have been found in the parvalbumin genes of rat and human. A perfect 11-bp repeat upstream to positions-149 and-163 respectively is homologous only to the rat promoter. These results will be related to tissue and species differences in PV expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, W. and Pühler, A.: A family of high-copy-number plasmid vectors with end-label sites for rapid nucleotide sequencing. Gene 70: 171–179, 1988

    Google Scholar 

  • Berchtold, M.W.: Cloning of the rat parvalbumin gene. Methods Enzymol 139: 317–325, 1987.

    Google Scholar 

  • Berchtold, M.W.: The rat and parvalbumin gene. In Ch. Gerday, L. Bolis, and R. Gilles (eds.); Calcium and Calcium Binding Proteins, pp. 40–43, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  • Berchtold, M.W.: Parvalbumin genes from human and rat are identical in intron/exon organization and contain highly homologous regulatory elements and coding sequences. J Mol Biol 210: 417–427, 1989.

    Google Scholar 

  • Berchtold, M.W., Heizmann, C.W., and Wilson, K.J.: Primary structure of parvalbumin from rat skeletal muscle. Eur J Biochem 127: 381–389, 1982.

    Google Scholar 

  • Berchtold, M.W., Celio, M.R. and Heizmann, C.W.: Paravalbumin in non-muscle tissues of the rat. J Biol Chem 259: 5189–5196, 1984.

    Google Scholar 

  • Berchtold, M.W., Epstein, P., Beaudet, A.L., Payne, M.E., Heizmann, C.W., and Means, A.R.: Structural organization and chromosomal assignment of the parvalbumin gene. J Biol Chem 262: 8696–8701, 1987.

    Google Scholar 

  • Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., and Rutter, W.J.: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299, 1979.

    Google Scholar 

  • Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P., Kedinger, C., and Chambon, P.: Expression of cloned genes in new environment. Science 209: 1406–1414 1980.

    Google Scholar 

  • Dynan, W.S. and Tjian, R.: Control of eucaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316: 774–778, 1985.

    Google Scholar 

  • Epstein, P., Means, A.R., and Berchtold, M.W.: Isolation of a rat parvalbumin gene and full length cDNA. J Biol Chem 261: 5886–5891, 1986.

    Google Scholar 

  • Frischauf, A.-M., Lehrach, H., Poustka, A., and Murray, N.: Lanbda replacement vectors carrying polylinker sequences. J Mol Biol 170: 827–842, 1983.

    Google Scholar 

  • Füchtbauer, E.-M., Rowlerson, A.M., Götz, K., Friedrich, G., Mabuchi, K., Gergely, J. and Jockusch, H.: Direct correlation of parvalbumin levels with myosin isoforms and succinate dehydrogenase activity on frozen sections of rodent muscle. J Histochem Cytochem 39: 355–361, 1991.

    Google Scholar 

  • Heizmann, C.W.: Parvalbumin in non-muscle cells. In Ch. Gerday, L. Bolis and R. Gilles (eds.); Calcium and Calicium Binding Proteins, pp. 93–101, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.

    Google Scholar 

  • Heizmann, C.W., Berchtold, M.W., and Rowlerson, A.M.: Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci USA, 79: 7243–7247, 1982.

    Google Scholar 

  • Hohn, B. and Murray, K.: Packaging recombinant DNA molecules into bacteriophage particles in vitro. Proc Natl Acad Sci USA 74: 3259–3263, 1977.

    Google Scholar 

  • Ish-Horowicz, D. and Burke, J.F.: Rapid and efficient cosmid cloning. Nucleic Acids Res. 9: 2989–2998, 1981.

    Google Scholar 

  • Jockusch, H.: Muscle fibre transformations in myotonic mouse mutants, In D. Pette; The Dynamic State of Muscle Fibers, pp. 429–443, Walter de Gruyter, Berlin, New York, 1990.

    Google Scholar 

  • Jockusch, H., Reininghaus, J., Stuhlfauth, I., and Zippel, M.: Reduction of myosin-light-chain phosphorylation and of parvalbumin content in myotonic mouse muscle and its reversal by tocainide. Eur J Biochem 171: 101–105, 1988.

    Google Scholar 

  • Keller, E.B. and Noon, W.A.: Intron splicing: a conserved internal signal in introns of animal pre-mRNAs. Proc Natl Acad Sci USA 81: 7417–7420, 1984.

    Google Scholar 

  • Klug, G., Reichmann, H., and Pette, D.: Decreased parvalbumin contents in skeletal muscles of C57BL/6J(dy 2J/dy 2J) dystrophic mice. Muscle Nerve 8: 576–579, 1985.

    Google Scholar 

  • Kluxen, F.-W., Schöffl, F., Berchtold, M.W., and Jockusch, H.: Opposite regulation of the mRNAs for parvalbumin and p19/6.8 in myotonic mouse muscle. Eur J Biochem 176: 153–158, 1988.

    Google Scholar 

  • Konieczny, S.F. and Emerson, C.P., Jr.: Complex regulation of the muscle-specific contractile protein (troponin I) gene. Mol Cell Biol 7: 3065–3075, 1987.

    Google Scholar 

  • Kretsinger, R.H.: Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem 8: 119–174, 1980.

    Google Scholar 

  • Leberer, E. and Pette, D.: Neural regulation of parvalbumin expression in mammalian skeletal muscle. Biochem J 235, 67–73, 1986.

    Google Scholar 

  • Maniatis, T., Fritsch, E.F., and Sambrook, J.: Molecular Cloning: A laboratory Manual, Cold Spring Harbor University Press, Cold Spring Harbor, N.Y., 1982.

    Google Scholar 

  • Maniatis, T., Goodbourn, S., and Fischer, J. A.: Regulation of inducible and tissue-specific gene expression. Science 236: 1237–1245, 1987.

    Google Scholar 

  • Mehrke, G., Brinkmeier, H., and Jockusch, H.: The myotonic mouse mutant ADR: Electrophysiology of the muscle fiber. Muscle Nerve 11: 440–446, 1988.

    Google Scholar 

  • Mount, S.M.: A catalogue of splice junction sequences. Nucleic Acids Res. 10: 459–472, 1982.

    Google Scholar 

  • Murray, N.E., Brammar, W.J., and Murray, K.: Lambdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet 150: 53–61, 1977.

    Google Scholar 

  • Müntener, M., Rowlerson, A.M., Berchtold, M.W. and Heizmann, C.W.: Changes in the concentration of the calcium-binding parvalbumin in cross-reinnervated rat muscles. J Biol Chem 262: 465–469, 1987.

    Google Scholar 

  • Nabeshima, Y., Fujii-Kurijama, Y., Muramatsu, M., and Ogata, K.: Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature 308: 333–338, 1984.

    Google Scholar 

  • Nussinov, R.: Sequence signals in eucaryotic upstream regions. Crit Rev Biochem Mol Biol 25: 185–224, 1990.

    Google Scholar 

  • Pearson, W.R. and Lipman, D.J.: Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448, 1988.

    Google Scholar 

  • Reininghaus, J., Füchtbauer, E.-M., Bertram, K. and Jockusch, H.: The myotonic mouse mutant ADR: physiological and histochemical properties of muscle. Muscle Nerve 11: 433–439, 1988.

    Google Scholar 

  • Ruskin, B., Krainer, A.R., Maniatis, T., and Green, M.R.: Excision of an intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell, 38: 317–331, 1984.

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467, 1977.

    Google Scholar 

  • Schwartz, L.M. and Kay, B.K.: Differential expression of the Ca2+-binding protein parvalbumin during myogenesis in Xenopus laevis. Dev Biol 128: 441–452, 1988.

    Google Scholar 

  • Schöffl, F. and Jockusch, H.: Genetic mapping and physical characterization of parvalbumin genes. Int J Biochem 22: 1211–1215, 1990.

    Google Scholar 

  • Seto-Ohshima, A., Amson, P.C., Berchtold, M.W., and Heizmann, C.W.: Localization of parvalbumin mRNA in rat brain by in situ hybridization histochemistry. Exp Brain Res 75: 653–658, 1989.

    Google Scholar 

  • Shah, D.M., Hironaka, C.M., Wiegand, R.C., Harding, E.I., Krivi, G.G., and Tiemeier, D.C.: Structural analysis of a maize gene coding for glutathione-S-transferase involved in herbicide detoxification. Plant Mol Biol 6: 203–211, 1986.

    Google Scholar 

  • Shapiro, M.B. and Senapathy, P.: RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15: 7155–7174, 1987.

    Google Scholar 

  • Steinmeyer, K., Klocke, R., Ortland, C., Gronemeier, M., Jockusch, H., Gründer, S., and Jentsch, T.J.: Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354: 304–308, 1991.

    Google Scholar 

  • Stuhlfauth, I., Reinighaus, J., Jockusch, H., and Heizmann, C.W.: Calcium-binding protein, parvalbumin, is reduced in mutant mammalian muscle with abnormal contractile properties. Proc Natl Acad Sci USA 81: 4814–4818, 1984.

    Google Scholar 

  • Watkins, W.J. and Watts, D.C.: Biological features of the new A2G-adr mouse mutant with abnormal muscle function. Lab Anim 18: 1–6, 1984.

    Google Scholar 

  • Weydert, A., Daubas, P., Caravatti, M., Minty, A., Bugaisky, G., Cohen, A., Robert, B., and Buckingham, M.: Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. J Biol Chem 258: 13867–13874, 1983.

    Google Scholar 

  • Whalen, R.G.: Myosin isoenzymes as molecular markers for muscle physiology. J Exp Biol 115: 43–53, 1985.

    Google Scholar 

  • Zühlke, Ch., Schöffl, F., Jockusch, H., Simon, D., and Guénet, J.-L.: cDNA sequence and chromosomal localization of the mouse parvalbumin gene, Pva. Genet Res 54: 37–43, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleef, M., Zühlke, C., Jockusch, H. et al. The structure of the mouse parvalbumin gene. Mammalian Genome 3, 217–225 (1992). https://doi.org/10.1007/BF00355722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355722

Keywords

Navigation