Skip to main content
Log in

Close linkage of retinoic acid receptor genes with homeobox- and keratin-encoding genes on paralogous segments of mouse Chromosomes 11 and 15

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Retinoic acid is essential for normal development and growth of structures such as head and limbs, and it can act as morphogen or teratogen. Retinoic acid induces expression of genes such as the homeobox genes and keratin type I and type II genes. Retinoic acid receptors are nuclear transcription factors that play a key role in retinoid physiology. As part of the characterization of retinoic acid receptor gene family, linkage of genes encoding the three receptors was determined by using interspecific backcross and recombinant inbred strain analysis of restriction fragment variants. Retinoic acid receptor α is located on mouse Chromosome (Chr) 11 near the homeobox-2 complex and the keratin type I gene complex, whereas retinoic acid receptor γ is on mouse Chr 15 near the homeobox-3 complex and the keratin type II complex. Close genetic proximity of these functionally related genes may be significant. We confirmed assignment of retinoic acid receptor β to the centromeric portion of Chr 14. These linkage assignments provide further evidence for duplicated segments in the mouse genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acampora, D., D'Esposito, M., Faiella, A., Pannese, M., Migliaccio, E., Morelli, F., Stornaiulo, A., Nigro, V., Simeone, A., and Boncinelli, E.: The human HOX gene family. Nucleic Acids Res 17: 10385–10402, 1989.

    Google Scholar 

  • Balling, R., Deutsch, U., and Gruss, P.: Undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax-1. Cell 55: 531–535, 1988.

    Google Scholar 

  • Benbrook, D., Lernhardt, E., and Pfahl, M.: A new retinoic acid receptor identified from a hepatocellular carcinoma. Nature 333: 669–672, 1988.

    Google Scholar 

  • Bishop, D.T.: The information content of phase-known matings for ordering genetic information. Genet Epidemiol 2: 349–361, 1985.

    Google Scholar 

  • Brand, N., Petkovich, M., Krust, A., Chambon, P., de Thé, H., Marchio, A., Tiollais, P., and Dejean, A.: Identification of a second human retinoic acid receptor. Nature 332: 850–853, 1988.

    Google Scholar 

  • Buchberg, A.M., Brownell, E., Nagata, S., Jenkins, N.A., and Copeland, N.G.: A comprehensive genetic map of murine Chromosome 11 reveals extensive linkage conservation between mouse and human. Genetics 122: 153–161, 1989.

    Google Scholar 

  • Buchberg, A.M., Moskow, J.J., Buckwalter, M.S., and Camper, S.A.: Mouse Chromosome 11. Mammalian Genome 1: 158–191, 1991.

    Google Scholar 

  • Cattanach, B.M. and Rasberry, C.: A dominant mutation affecting the feet. Mouse News Lett 77: 123, 1987.

    Google Scholar 

  • Ceci, J.D., Kingsley, D.M., Silan, C.M., Copeland, N.G., and Jenkins, N.A.: A molecular genetic backcross linkage map of the proximal half of mouse Chromosome 14. Genomics, 6: 673–678, 1990.

    Google Scholar 

  • Cheng, S.V., Nadeau, J.H., Tanzi, R.E., Watkins, P.C., Jagadesh, J., Taylor, B.A., Haines, J.L., Sacchi, N., and Gusella, J.F.: Comparative gene mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17. Proc Natl Acad Sci USA 85: 6032–6036, 1988.

    Google Scholar 

  • Cheng, S.V., Martin, G.R., Nadeau, J.H., Haines, J.L., Bucan, M., Kozak, C.A., MacDonald, M.E., Lockyer, J.L., Ledley, F.D., Woo, S.L.C., Lehrach, L., Gilliam, T.C., and Gusella, J.F.: Synteny of mouse Chromosome 5 homologs for human DNA loci linked to the Huntington disease gene. Genomics 4: 419–426, 1989.

    Google Scholar 

  • Comings, D.E.: Evidence of ancient tetraploidy and conservation of linkage groups in mammalian chromosomes. Nature 238: 455–457, 1972.

    Google Scholar 

  • Compton, J.G., Phillips, S., and Nadeau, J.H.: Keratin genes: proximity to mutant loci on Chr 11 and Chr 15 that affect the epidermis and linkage to homeobox homolog genes. Mouse News Lett 80: 165–166, 1988.

    Google Scholar 

  • Crosby, J.L., Bleackley, R.C., and Nadeau, J.H.: A complex of serine protease genes expressed preferentially in cytotoxic T-lymphocytes is closely linked to the T-cell receptor alpha and delta chain genes on mouse Chromosome 14. Genomics 6: 252–259, 1990.

    Google Scholar 

  • Czosnek, H., Nudel, U., Shani, M., Barker, P.E., Pravtcheva, D.D., Ruddle, F.H., and Yaffe, D.: The genes coding for the muscle contractile proteins, myosin heavy chain, myosin light chain 2, and skeletal muscle actin are located on three different mouse chromosomes. EMBO J 1: 1299–1305, 1982.

    Google Scholar 

  • de Thé, H., Marchio, A., Tiollais, P., and Dejean, A.: Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes. EMBO J 8: 429–433, 1989.

    Google Scholar 

  • de Thé, H., Chomienne, C., Lamotte, M., Degas, L., and Dejean, A.: The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor gene to a novel transcribed locus. Nature 347: 558–561, 1990.

    Google Scholar 

  • Dollé, P., Ruberte, E., Kastner, P., Petkovitch, M., Stoner, C.M., Gudas, L.J., and Chambon, P.: Differential expression of genes encoding alpha, beta, and gamma retinoic acid receptors and CRABP in the developing limb of the mouse. Nature 342: 702–704, 1989.

    Google Scholar 

  • Ferguson, J.M. and Wallace, M.E.: Personal communication. Mouse News Lett 57: 11, 1977.

    Google Scholar 

  • Fuchs, E. and Green, H.: Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25: 617–625, 1981.

    Google Scholar 

  • Giguère, V. and Evans, R.M.: Identification of receptors for retinoids as members of the steroid and thyroid hormone receptor family. Methods Enzymol 189: 223–232, 1990.

    Google Scholar 

  • Giguère, V., Ong, E.S., Segui, P., and Evans, R.M.: Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629, 1987.

    Google Scholar 

  • Giguère, V., Shago, M., Zirngibl, R., Tate, P., Rossant, J., and Varmuza, S.: Identification of a novel isoform of the retinoic acid receptor-gamma expressed in the mouse embryo. Mol Cell Biol 10: 2335–2340, 1990.

    Google Scholar 

  • Giudice, G.J. and Fuchs, E.V.: Vitamin A-mediated regulation of keratinocyte differentiation. Methods Enzymol 190: 18–29, 1990.

    Google Scholar 

  • Hart, C.P., Fainsod, A., and Ruddle, F.H.: Sequence analysis of the murine Hox-2.2, 2.3 and-2.4 homeo boxes: evolutionary and structural comparisons. Genomics 1: 182–195, 1987.

    Google Scholar 

  • Ishikawa, T., Umesono, K., Mangelsdorf, D., Aburatani, H., Stanger, B., Shibasaki, Y., Imawari, M., Evans, R., and Takaku, F.: A functional retinoic acid receptor encoded by the gene on human chromosome 12. Mol Endocrinol 4: 837–844, 1990.

    Google Scholar 

  • Joyner, A.L., Lebo, R.V., Kan, Y.W., Tjian, R., Cox, D.R., Martin, G.R.: Comparative chromosome mapping of a conserved homeo box region in mouse and human. Nature 314: 173–175, 1985.

    Google Scholar 

  • Koizumi, T., MacDonald, M., Bucan, M., Hopwood, J.J., Morris, C.P., Scott, H.S., Gusella, J.F., and Nadeau, J.H.: Linkage, but not gene order, of homologous loci, including α-L-iduronidase, is conserved in the Huntington disease region of the mouse and human genomes. Mammalian Genome 3: 23–27, 1992.

    Google Scholar 

  • Kopan, R. and Fuchs, E.: The use of retinoic acid to probe the relation between hyperproliferation-associated keratins and cell proliferation in normal and malignant cells. J Cell Biol 109: 295–307, 1989.

    Google Scholar 

  • Krust, A., Kastner, P., Petkovich, M., Zelent, A., and Chambon, P.: A third human retinoic acid receptor, hRAR gamma. Proc Natl Acad Sci USA 86: 5310–5314, 1989.

    Google Scholar 

  • Lalley, P.A., Minna, J.D., and Francke, U.: Conservation of autosomal synteny groups in mouse and man. Nature 274: 160–162, 1978.

    Google Scholar 

  • Lammer, E.J., Chen, D.T., Hoar, R.M., Agnish, N.D., Benke, P.J., Braun, J.T., Curry, C.J., Fernhoff, P.M., Grix, A.W., Lott, I.T., Richard, J.M., and Shyan, C.S.: Retinoic acid embryopathy. N Eng J Med 313: 837–841, 1985.

    Google Scholar 

  • Lundin, L.-G.: Evolutionary conservation of large chromosomal segments reflected in mammalian gene maps. Clin Genet 16: 72–81, 1979.

    Google Scholar 

  • Lussier, M., Filion, M., Compton, J.G., Nadeau, J.H., Lapointe, L., and Royal, A.: The mouse keratin 19-encoding gene: sequence, structure and chromosomal assignment. Gene 95: 203–213, 1990.

    Google Scholar 

  • Mackensen, J.S.: “Open eyelids” in newborn mice. J Hered 51: 188–190, 1960

    Google Scholar 

  • Maden, M.: Vitamin A and pattern formation in the regenerating limb. Nature 295: 672–675, 1982.

    Google Scholar 

  • Maden, M., Ong, D.E., Summerbell, D., and Chytil, F.: Spatial distribution of cellular proteins binding to retinoic acid in the chick limb bud. Nature 335: 733–735, 1988.

    Google Scholar 

  • Maden, M., Ong, D.E., Summerbell, D., and Chytil, F.: The role of retinoid-binding proteins in the generation of pattern in the developing limb, the regenerating limb and the nervous system. Development 109: 109–119, 1989.

    Google Scholar 

  • Manly, K.F. and Elliott, R.W.: RI Manager, a microcomputer program for analysis of data from recombinant inbred strains. Mammalian Genome 1: 123–126, 1991.

    Google Scholar 

  • Mason, I., Murphy, D., and Hogan, B.L.M.: Expression of c-fos in parietal endoderm, amnion, and differentiating F9 teratocarcinoma cells. Differentiation 30: 76–81, 1985.

    Google Scholar 

  • Mattei, M.-G., Petkovitch, M., Mattei, J.-F., Brand, N., and Chambon, P.: Mapping of the human retinoic acid receptor gene to the q21 band of chromosome 17. Hum Genet 80: 186–188, 1988a.

    Google Scholar 

  • Mattei, M.-G., de Thè, H., Mattei, J.-F., Marchio, A., Tiollais, P., and Dejean, A.: Assignment of the human hap retinoic acid receptor RAR-beta gene to the p24 band of Chromosome 3. Hum Genet 80: 189–190, 1988b.

    Google Scholar 

  • Mattei, M.-G., Rivière, M., Krust, A., Ingvarsson, S., Vennström, B., Islam, M.Q., Levan, G., Kautner, P., Zelent, A., Chambon, P., Szpirer, J., and Szpirer, C.: Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse, and rat genomes. Genomics 10: 1061–1069, 1991

    Google Scholar 

  • Miller, J.R.: Personal communication. Mouse News Lett 30: 16, 1964.

    Google Scholar 

  • Nadeau, J.H.: Maps of linkage and synteny homologies between mouse and man. Trends Genet 5: 82–86, 1989.

    Google Scholar 

  • Nadeau, J.H.: Genome duplication and comparative gene mapping. In K. Adolph (ed.); Advanced Techniques in Chromosome Research, pp. 269–296. Marcel Dekker, New York, 1991.

    Google Scholar 

  • Nadeau, J.H., Berger, F.G., Cox, D.R., Crosby, J.L., Davisson, M.T., Ferrara, D., Fuchs, E., Hart, C., Hunihan, L., Lalley, P.A., Langley, S.H., Martin, G.R., Nichols, L., Phillips, S.J., Roderick, T.R., Roop, D.R., Ruddle, F.H., Skow, L.C., and Compton, J.G.: A family of type I keratin genes and the homeobox-2 gene complex are closely linked to the rex locus on mouse Chromosome 11. Genomics 5: 454–462, 1989.

    Google Scholar 

  • Nadeau, J.H., Birkenmeier, C.S., Chowdhury, K., Crosby, J.L., and Lalley, P.A.: Zinc finger protein gene complexes on mouse chromosomes 8 and 11. Genomics 8: 469–476, 1990.

    Google Scholar 

  • Nadeau, J.H., Ceci, J.D., and Cox, R.: Mouse Chromosome 14. Mammalian Genome 1: S221-S240, 1991a.

    Google Scholar 

  • Nadeau, J.H., Davisson, M.T., Doolittle, D.P., Grant, P., Hillyard, A.L., Kosowsky, M., and Roderick, T.H.: Comparative map for mice and humans. Mammalian Genome 1: S461-S515, 1991b.

    Google Scholar 

  • Nadeau, J.H., Herrmann, B., Bucan, M., Burkart, D., Crosby, J.L., Erhart, M.A., Kosowsky, M., Kraus, J.P., Michiels, F., Schnattinger, A., Tchetgen, M.-B., Varnum, D., Willison, K., Lehrach, H., and Barlow, D.: Genetic maps of mouse chromosome 17 including 12 new anonymous DNA loci and 25 anchor loci. Genomics 8: 78–89, 1991c.

    Google Scholar 

  • Nadeau, J.H., Kosowsky, M., and Steel, K.: Comparative gene mapping, genome duplication, and the genetics of hearing. Ann NY Acad Sci 630: 49–67, 1991d.

    Google Scholar 

  • Niazi, I.A. and Saxena, S.: Abnormal limb regeneration in tadpoles of the toad, Bufo andersoni, exposed to excess Vitamin A. Folia Biol 26: 3–11, 1978.

    Google Scholar 

  • Ohno, S.: Evolution by Gene Duplication, Springer-Verlag, New York, 1970.

    Google Scholar 

  • Oshima, R.G., Abrams, L., and Kulesh, D.: Activation of an intron enhancer with the keratin 18 gene by expression of c-fos and c-jun in undifferentiated embryonal carcinoma cells. Genes Dev 4: 835–848, 1990.

    Google Scholar 

  • Peterson, A.C.: The genetics of cocked, a new behavioral mutant in the house mouse. Can J Genet Cytol 12: 391–392, 1970.

    Google Scholar 

  • Peterson, A., and Biddle, F.: Personal communication. Mouse News Lett 43: 19, 1970.

    Google Scholar 

  • Petkovich, M., Brand, N.J., Krust, A., and Chambon, P.: A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330: 444–450, 1987.

    Google Scholar 

  • Phillips, S.J. and Nadeau, J.H.: Personal communication. Mouse News Lett 70: 83, 1984.

    Google Scholar 

  • Popescu, N.C., Bowden, P.E., and DiPaolo, J.A.: Two type II keratin genes are located on human chromosome 12. Hum Genet 82: 109–112, 1989.

    Google Scholar 

  • Rabin, M., Hart, C.P., Ferguson-Smith, A., McGinnis, W., Levine, M., and Ruddle, F.H.: Two homeo box loci mapped in evolutionarily related mouse and human chromosomes. Nature 314: 175–178, 1985.

    Google Scholar 

  • Ragsdale, C.W., Petkovitch, M., Gates, P.B., Chambon, P., and Brockes, J.: Identification of a novel retinoic acid receptor in regenerative tissues of the newt. Nature 341: 654–657, 1989.

    Google Scholar 

  • Rasberry, C. and Cattanach, B.M.: Location of talipes (Tal). Mouse Genome 87: 89, 1990.

    Google Scholar 

  • Roberts, A.B. and Sporn, M.B.: Cell biology and biochemistry of the retinoids. In M.B. Sporn, A.B. Roberts and D.S. Goodman (eds.); The Retinoids, vol. 2, pp. 209–286, Academic Press, New York, 1984.

    Google Scholar 

  • Rosa, F.W., Wilk, A.L., and Kelsey, F.O.: Teratogen update: vitamin A and congeners. Teratology 33: 355–364, 1986.

    Google Scholar 

  • Ruberte, E., Dollè, P., Krust, A., Zelent, A., Morriss-Kay, G., and Chambon, P.: Specific spatial and temporal distribution of retinoic acid receptor gamma transcripts during mouse embryogenesis. Development 108: 213–222, 1990.

    Google Scholar 

  • Saffer, J., Thurston, S.J., Annarella, M.B., and Compton, J.G.: Localization of the gene for the trans-acting transcription factor Spl to the distal end of mouse Chromosome 15. Genomics 8: 571–574, 1990.

    Google Scholar 

  • Searle, A.G., Peters, J., Lyon, M.F., Hall, J.G., Evans, E.P., Edwards, J.H., and Buckle, V.J.: Chromosome maps of man and mouse IV. Ann Hum Genet 53: 89–140, 1989.

    Google Scholar 

  • Silver, J.: Confidence limits for estimates of gene linkage based on analysis of recombinant inbred strains. J Hered 76: 436–440, 1985.

    Google Scholar 

  • Simeone, A., Acampora, D., Arcioni, L., Andrews, P., Boncinelli, E., and Mavillo, F.: Sequential activation of HOX2 genes by retinoic acid in human embryonal carcinoma cells. Nature 346: 763–766, 1990.

    Google Scholar 

  • Stellmach, V., Leask, A., and Fuchs, E.: Retinoid-mediated transcriptional regulation of keratin genes in human epidermal and squamous cell carcinoma cells. Proc Natl Acad Sci USA 88: 4583–4586, 1991.

    Google Scholar 

  • Stone, J.C., Crosby, J.L., Kozak, C.A., Schievella, A.R., Bernards, R., and Nadeau, J.H.: The murine retinoblastoma homolog maps to chromosome 14 near Es-10. Genomics 5: 70–74, 1989.

    Google Scholar 

  • Summerbell, D.: The effect of local application of retinoic acid to the anterior margin of the developing chick limb. J Embryol Exp Morphol 78: 269–289, 1983.

    Google Scholar 

  • Sweetser, D.A., Birkenmeier, E.H., Klisak, I.J., Zollman, S., Sparkes, R.S., Mohandas, T., Lusis, A.J. and Gordon, J.I.: The human and rodent intestinal fatty acid binding protein genes. Comparative analysis of their structure, expression, and linkage relationships. J Biol Chem 262: 16060–16071, 1987.

    Google Scholar 

  • Tabin, C.J.: Retinoids, homeoboxes, and growth factors: toward molecular models for limb development. Cell 66: 199–217, 1991.

    Google Scholar 

  • Tabor, J.M. and Oshima, R.G.: Identification of mRNA species that code for extra-embryonic endodermal cytoskeletal proteins in differentiated derivatives of murine embryonal carcinoma cells. J Biol Chem 257: 8771–8774, 1982.

    Google Scholar 

  • Taylor, B.A.: Recombinant inbred strains: use in gene mapping. In H.C. Morse (ed.) Origins of Inbred Mice, pp. 423–438, Academic Press, New York, 1978.

    Google Scholar 

  • Taylor, B.A.: Personal communication. Mouse News Lett 80: 167, 1988a.

    Google Scholar 

  • Taylor, B.A.: Personal communication. Mouse News Lett 81: 72, 1988b.

    Google Scholar 

  • Thaller, C. and Eichele, G.: Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327: 625–628, 1987.

    Google Scholar 

  • Tickle, C., Alberts, B.M., Wolpert, L., and Lee, J.: Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296: 564–565, 1982.

    Google Scholar 

  • Tomic, M., Jiang, C.-K., Apstein, H.S., Freedberg, I.M., Samuels, H.H., and Blumenberg, M.: Nuclear receptors for retinoic acid and thyroid-hormone regulate transcription of keratin genes. Cell Regul 1: 965–973, 1990.

    Google Scholar 

  • Tulchin, N. and Taylor, B.A.: Gamma-glutamyl cyclotransferase: a new genetic polymorphism in the mouse (Mus musculus) linked to Lyt-2. Genetics 99: 109–116, 1981.

    Google Scholar 

  • Wallace, M.E. and Ferguson, J.M.: Personal communication. Mouse News Lett 71: 19, 1984.

    Google Scholar 

  • Weydert, A., Daubas, P., Lagaritis, I., Barton, P., Garner, I., Leader, D.P., Bonhomme, F., Catalan, J., Simon, D., Guènet, J.-L., Gros, F., and Buckingham, M.E.: Genes for skeletal muscle myosin heavy chain are clustered and are not located on the same mouse chromosome as a cardiac myosin heavy chain gene. Proc Natl Acad Sci USA 82: 7183–7187, 1985.

    Google Scholar 

  • Wilcox, F.H. and Roderick, T.H.: Location on Chromosome 6 of the locus for a major liver protein (Lvp-1) of the house mouse. Genet Res 40: 213–215, 1982.

    Google Scholar 

  • Wolbach, S.B.: Effects of vitamin A-deficiency and hypervitaminosis. In W.H. Schrell and R.S. Harris (eds.); The Vitamins, vol. 1, pp. 106–137. Academic Press, New York, 1954.

    Google Scholar 

  • Zelent, A., Krust, A., Petkovich, M., Kastner, P., and Chambon, P.: Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin. Nature 339: 714–717, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadeau, J.H., Compton, J.G., Giguère, V. et al. Close linkage of retinoic acid receptor genes with homeobox- and keratin-encoding genes on paralogous segments of mouse Chromosomes 11 and 15. Mammalian Genome 3, 202–208 (1992). https://doi.org/10.1007/BF00355720

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355720

Keywords

Navigation