Skip to main content

Advertisement

Log in

Evolution of a repeat sequence in the parathyroid hormone-related peptide gene in primates

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

A polymorphism of the variable number of tandem repeat (VNTR) type is located 97 bp downstream of exon VI of the parathyroid hormone-related peptide (PTHrP) gene in humans. The repeat unit has the general sequence G(TA)nC, where n equals 4–11. In order to characterize the evolutionary history of this VNTR, we initially tested for its presence in 13 different species representing four main groups of living primates. The sequence is present in the human, great apes, and Old World monkeys, but not in New World monkeys; and this region failed to PCR amplify in the Loris group. Thus, the evolution of the sequence as part of the PTHrP gene started at least 25–35 millions years ago, after divergence of the Old World and New World monkeys, but before divergence of Old World monkeys and great apes and humans. The structural changes occurring during evolution are characterized by a relatively high degree of sequence divergence. In general, the tandem repeat region tends to be longer and more complex in higher primates with the repeat unit motifs all being based on a TA-dinucleotide repeat sequence. Intra-species variability of the locus was demonstrated only in humans and gorilla. The divergence of the TA-dinucleotide repeat sequence and the variable mutation rates observed in different primate species are in contrast to the relative conservation of the flanking sequences during primate evolution. This suggests that the nature of the TA-dinucleotide repeat sequence, rather than its flanking sequences, is responsible for generating variability. Particular features of the sequence may allow it to form stable secondary structures during DNA replication, and this, in turn, could promote slipped-strand mispairing to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg, E.S., Olaisen, B. (1993). Characterization of the COL2A1 VNTR polymorphism. Genomics 16, 350–354.

    Google Scholar 

  • Charlesworth, B., Sniegowski, P., Stephan, W. (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220.

    Google Scholar 

  • Chidambaram, A., Law, J.C., Ferrell, R.E. (1992). Differences in hypervariability within the retinoblastoma gene in the great apes. Genomics 14, 1112–1113.

    Google Scholar 

  • Ely, J., Deka, R., Chakraborty, R., Ferrell, R.E. (1992). Comparison of five tandem repeat loci between humans and chimpanzees. Genomics 14, 692–698.

    Google Scholar 

  • Fleagle, J.G. (1988). Primate adaptation and evolution. (San Diego: Academic Press).

    Google Scholar 

  • Fresco, J.R., Alberts, B.M. (1960). The accommodation of noncomplementary bases in helical polyribonucleotides and deoxyribonucleic acids. Proc. Natl. Acad. Sci. USA 46, 311–321.

    Google Scholar 

  • Glickman, B.W., Ripley, L.S. (1984). Structural intermediates of deletion mutagenesis: a role for palindromic DNA. Proc Natl. Acad. Sci. USA 81, 512–516.

    Google Scholar 

  • Goodman, M., Tagle, D.A., Fitch, D.H.A., Bailey, W., Czelusniak, J., Koop, B.F., Benson, P., Slightom, J.L. (1990). Primate evolution at the DNA level and a classification of the hominoids. J. Mol. Evol. 30, 260–266.

    Google Scholar 

  • Gray, I.C., Jeffreys, A.J. (1991). Evolutionary transience of hypervariable minisatellites in man and primates. Proc. R. Soc. Lond. B 243, 241–253.

    Google Scholar 

  • Haddad, J.G., Jr., Rutledge, S.J., Thiede, M.A. (1990). Structure and expression of the parathyroid hormone-related peptide in the chicken. J. Bone Min. Res. 5S2, Abstr. 732.

  • Hendy, G.N., Goltzman, D. (1992). Molecular biology of parathyroid hormone-like peptide. In Parathyroid Hormone Related Protein: Normal Physiology and Its Role in Cancer, B. Halloran, R. Nissenson, eds. (Boca Raton: CRC Press), pp. 25–55.

    Google Scholar 

  • Jeffreys, A.J., Wilson, V., Thein, S.L. (1985). Hypervariable “minisatellite” regions in human DNA. Nature 314, 67–73.

    Google Scholar 

  • Jeffreys, A.J., Tamaki, K., MacLeod, A., Monckton, D.G., Neil, D.I., Armour, J.A.L. (1994). Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145.

    Google Scholar 

  • Karaplis, A.C., Yasuda, T., Hendy, G.N., Goltzman, D., Banville, D. (1990). Gene encoding parathyroid hormone-like peptide: nucleotide sequence of the rat gene and comparison with the human homologue. Mol. Endocrinol. 4, 441–446.

    Google Scholar 

  • Krontiris, T.G., Devlin, B., Karp, D.D., Robert, N.J., Risch, N. (1993). An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. N. Engl. J. Med. 329, 517–523.

    Google Scholar 

  • Levinson, G., Gutman, G.A. (1987). Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203–221.

    Google Scholar 

  • Madsen, C.S., Ghivizzani, S.C., Hauswirth, W.W. (1993). In vivo and in vitro evidence for slipped mispairing in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 90, 7671–7675.

    Google Scholar 

  • Mangin, M., Ikeda, K., Breyer, B.E., Broadus,A.E. (1989). Isolation and characterization of the human parathyroid hormone-like peptide gene. Proc. Natl. Acad. Sci. USA 86, 2408–2412.

    Google Scholar 

  • Mangin, M., Ikeda, K., Broadus, A.E. (1990a). Structure of the mouse gene encoding the parathyroid hormone-related peptide. Gene 95, 195–202.

    Google Scholar 

  • Mangin, M., Ikeda, K., Dreyer, B.E., Broadus, A.E. (1990b). Identification of an up-stream promoter of the human parathyroid hormone-related peptide gene. Mol. Endocrinol. 4, 851–858.

    Google Scholar 

  • Martin, J.B. (1993). Molecular genetics of neurological diseases. Science 262, 674–676.

    Google Scholar 

  • Martin, R.D. (1990). Primate Origins and Evolution: A Phylogenetic Reconstruction. (London: Chapman and Hall).

    Google Scholar 

  • Martin, R.D. (1993). Primate origins: plugging the gaps. Nature 363, 223–233.

    Google Scholar 

  • Metzenberg, A.B., Wurzer, G., Huisman, T.H., Smithies, O. (1991). Homology requirements for unequal cross over in humans. Genetics 128, 143–161.

    Google Scholar 

  • Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, E., White, R. (1987). Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235, 1616–1622.

    Google Scholar 

  • Pascali, V.L., Bisol, G.D., Dobosz, M., d'Aloja, E., Paonessa, G., Mereu, U. (1994). Chimpanzee DNA profiles on trial. Nature 367, 692–693.

    Google Scholar 

  • Pausova, Z., Morgan, K., Fujiwara, T.M., Bourdon, J., Goltzman, D., Hendy, G.N. (1993). Molecular characterization of an intragenic minisatellite (VNTR) polymorphism in the human parathyroid hormone-related peptide gene in chromosome region 12p12.1-p11.2. Genomics 17, 243–244.

    Google Scholar 

  • Stephan, W. (1989). Tandem-repetitive noncoding DNA: forms and forces. Mol. Biol. Evol. 6, 198–212.

    Google Scholar 

  • Suva, L.J., Mather, K.A., Gillespie, M.T., Webb, G.C., Ng, K.W., Winslow, G.A., Wood, W.I., Martin, T.J., Hudson, P.J. (1989). Structure of the 5′ flanking region of the gene encoding human parathyroid hormone-related protein (PTHrP). Gene 77, 95–105.

    Google Scholar 

  • Tautz, D., Schlötterer, C. (1994). Simple sequences. Curr. Opin. Genet. Dev. 4, 832–837.

    Google Scholar 

  • Tinoco, I., Jr., Borer, P.N., Dengler, B., Levine, M.D., Ulenbeck, O.C., Crothers, D.M., Gralla, J. (1973). Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 246, 40–41.

    Google Scholar 

  • Wahls, W.P., Wallace, L.J., Moore, P.D. (1990). Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60, 95–103.

    Google Scholar 

  • Wolff, R., Nakamura, Y., Odelberg, S., Shiang, R., White, R. (1991). Generation of variability at VNTR loci in human DNA. In DNA Fingerprinting: Approaches and Applications, T. Burke, G. Dolf, A.J. Jeffreys, R. Wolff, eds. (Basel: Birkhauser Verlag), pp. 20–38.

    Google Scholar 

  • Yasuda, T., Banville, D., Hendy, G.N., Goltzman, D. (1989). Characterization of the human parathyroid hormone-like peptide gene: functional and evolutionary aspects. J Biol Chem 264, 7720–7725.

    Google Scholar 

  • Zuker, M., Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pausova, Z., Morgan, K., Fujiwara, T.M. et al. Evolution of a repeat sequence in the parathyroid hormone-related peptide gene in primates. Mammalian Genome 6, 408–414 (1995). https://doi.org/10.1007/BF00355642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355642

Keywords

Navigation