Skip to main content
Log in

Phylogenetic conservation and physical mapping of members of the H6 homeobox gene family

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Homeobox genes represent a class of transcription factors that play key roles in the regulation of embryogenesis and development. Here we report the identification of a homeobox-containing gene family that is highly conserved at both the nucleotide and amino acid levels in a diverse number of species. These species encompass both vertebrate and invertebrate phylogenies, ranging from Homo sapiens to Drosophila melanogaster. In humans, at least two homeobox sequences from this family were identified representing a previously reported member of this family as well as a novel homeobox sequence that we physically mapped to the 10q25.2–q26.3 region of human Chromosome (Chr) 10. Multiple members of this family were also detected in three additional vertebrate species including Equus caballus (horse), Gallus gallus (Chicken), and Mus musculus (mouse), whereas only single members were detected in Tripneustes gratilla (sea urchin), Petromyzon marinus (lamprey), Salmo salar (salmon), Ovis aries (sheep), and D. melanogaster (fruit fly).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrin, K.H., Warner, C.A., Yoo, H., Goodfellow, P.J., Tsai, S., Desnick, R.J. (1991). Regional assignment of the human uroporphyrinogen III synthase (UROS) gene to chromosome 10q25.2–q26.3. Hum. Genet. 87, 8–22.

    Google Scholar 

  • Averof, M., Akam, M. (1993). HOM/Hox genes of Artemia: implications for the origin of insect and crustacean body plans. Curr. Biol. 3, 73–78.

    Google Scholar 

  • Bober, E., Baum, C., Braun, T., Arnold, H. (1994). A novel NK-related mouse homeobox gene: expression in central and peripheral nervous structures during embryonic development. Dev. Biol. 162, 288–303.

    Google Scholar 

  • Brooks-Wilson, A.R., Goodfellow, P.N., Povey, S., Nevanlinna, H.A., De Jong, P.J., Goodellow, P.J. (1990). Rapid cloning and characterization of new chromosome 10 DNA markers by Alu element-mediated PCR. Genomics 7, 614–620.

    Google Scholar 

  • Brooks-Wilson, A.R., Smailus, D.E., Weier, H., Goodfellow, P.J. (1992). Human repeat element-mediated PCR: cloning and mapping of chromosome 10 DNA markers. Genomics 13, 409–414.

    Google Scholar 

  • Callen, D.F., Hyland, V.J., Baker, E.G., Fratini, A., Simmers, R.N., Mulley, J.C., Sutherland, G.R. (1900). Fine mapping of gene probes and anonymous DNA fragments to the long arm of chromosome 16. Genomics 2, 144–153.

    Google Scholar 

  • Carson, N.L., Simpson, N.E. (1991). A physical map of human chromosome 10 and a comparison with an existing genetic map. Genomics 11, 379–388.

    Google Scholar 

  • Devereux, J., Haebrili, P., Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395.

    Google Scholar 

  • Drwinga, H.L., Toji, L.H., Kim, C.H., Greene, A.E., Mulivor, R.A. (1993). NIGMS human/rodent somatic cell hybrid mapping panels 1 and 2. Genomics 16, 311–314.

    Google Scholar 

  • Fisher, J.H., Kao, F.T., Jones, C., White, R.T., Benson, B.J., Mason, R.J. (1987). The coding sequence for the 32,000-Dalton pulmonary surfactant-associated protein A is located on chromosome 10 and identifies two separate restriction fragment length polymorphisms. Am. J. Hum. Genet. 40, 503–511.

    Google Scholar 

  • Garcia-Fernandez, J., Holland P.W.H. (1994). Archetypal organization of the amphioxus Hox gene cluster. Nature 370, 563–566.

    Google Scholar 

  • Gaunt, S.J. (1991). Expression patterns of mouse Hox genes: clues to an understanding of developmental and evolutionary strategies. BioEssays 13, 505–513.

    Google Scholar 

  • Holdener, B.C., Brown, S.D.M., Angel, J.M., Nicholls, R.D., Kelsey, G., Magnuson, T. (1993). Mouse Chromosome 7. Mamm. Genome 4(Suppl.), S110-S120.

    Google Scholar 

  • Holland, P.W.H. (1991). Cloning and evolutionary analysis of msh-like homeobox genes from mouse, zebrafish, and ascidian. Gene 98, 253–257.

    Google Scholar 

  • Holland, P.W.H. (1992). Homeobox gene in vertebrate evolution. BioEssays 14, 267–273.

    Google Scholar 

  • Kappan, C., Schugart, K., Ruddle, F., (1989). Two steps in the evolution of antennapedia-class vertebrate homeobox genes. Proc. Natl. Acad. Sci. USA 86, 5459–5463.

    Google Scholar 

  • Kim, Y., Nirenberg, M. (1989). Drosophila Nk-homeobox genes. Proc. Natl. Acad. Sci. USA 86, 7716–7720.

    Google Scholar 

  • Lathrop, M., Nakamura, Y., Carthwright, P., O'Connell, P., Leppert, M., Jones, M., Tateishu, H., Bragg, T., Lalouel, J., White, R. (1988). A primary genetic map of markers for human chromosome 10. Genomics 2, 157–164.

    Google Scholar 

  • Mathew, C.P.G., Wakeling, W., Jenes, E., Easton, D. (1990). Regional localisation of polymorphic markers on chromosome 10 by physical and genetic mapping. Ann. Hum. Genet. 54, 121–129.

    Google Scholar 

  • Ochman, H., Gerber, A.S., Hartl, D.L. (1988). Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623.

    Google Scholar 

  • Ohno, S. (1970). In Evolution by Gene Duplication. (New York: Springer Verlag), pp. 132–139.

    Google Scholar 

  • Preston, R.A., Post, J.C., Keats, B.J.B., Aston, C.E., Ferrell, R.E., Priest, J., Nouri, N., Losken, H.W., Morris, C.A., Hurtt, M.R., Mulvihill, J.J., Ehrlich, G.D. (1994). A gene for Crouzon craniofacial dysostosis maps to the long arm of chromosome 10. Nature Genet. 7, 149–153.

    Google Scholar 

  • Reardon, W., Winter, R.M., Rutland, P., Pulleyn, L.J., Jones, B.M., Malcom, S. (1994). Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nature Genet. 8, 98–103.

    Google Scholar 

  • Schugart, L., Kappen, C., Ruddle, F. (1989). Duplication of large genomic regions during the evolution of vertebrate homeobox genes. Proc. Natl. Acad. Sci. USA 86, 7067–7071.

    Google Scholar 

  • Stadler, H.S., Solursh, M. (1994). Characterization of the homeobox-containing gene GH6 identifies novel regions of homeobox gene expression in the developing chick embryo. Dev. Biol. 161, 251–262.

    Google Scholar 

  • Stadler, H.S., Pandanilam, B.J., Buetow, K., Murray, J.C., Solursh, M. (1992). Identification and genetic mapping of a homeobox gene to the 4p16.1 region of human chromosome 4. Proc. Natl. Acad. Sci. USA 89, 11579–11583.

    Google Scholar 

  • Triglia, T., Peterson, M.G., Kemp, D.J. (1988). A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 16, 8186.

    Google Scholar 

  • Wang, G.V.L., Dolecki, G.J., Carlos, R., Humphreys, T. (1990). Characterization and expression of two sea urchin homeobox gene sequences. Dev. Genet. 11, 77–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, H.S., Murray, J.C., Leysens, N.J. et al. Phylogenetic conservation and physical mapping of members of the H6 homeobox gene family. Mammalian Genome 6, 383–388 (1995). https://doi.org/10.1007/BF00355637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355637

Keywords

Navigation