Skip to main content

Advertisement

Log in

Widespread occurrence of extensive epimural rod bacteria in the hindguts of marine Thalassinidae and Brachyura (Crustacea: Decapoda)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Direct observation by scanning electron microscopy indicates that the presence of bacteria (epimural and unattached) in the hindguts of Crustacea is widespread, occurring across taxa (two infraorders, i.e., Brachyura and Thalassinidae, nine genera, 16 species), feeding types (detritivores, scavengers and carnivores), habitats (mangroves, saltmarshes, sand/mudflats) and continents (North America, South Africa, Australia). Crustacean hindguts clearly represent suitable environments for colonization by micro-organisms, despite the lack of specialized structures or modifications of the gut to facilitate this. Mats of closely-packed epimural rods and scattered epimural rods were the most common types of bacteria observed in the guts of the Crustacea examined, although unattached rods and scattered epimural cocci occurred in some species. There were, however, taxon-dependent differences in colonization characteristics of hindgut bacteria, possibly related to differences in gut lining. Abundance of hindgut microflora was unrelated to the host's taxon, habitat or geographical locality, but appeared to be affected by the feeding habits of the animal. Mats of epimural rods were associated exclusively with detritivores, while cocci were only observed in the hindguts of scavengers and carnivores. Moreover, extensive colonization by epimural rod bacteria (covering >50% of the hindgut lining) was observed in detritivores only, while carnivores harboured few or no rod bacteria. The detritivore hindgut appears to provide a better environment for microbial habitation than does that of carnivorous crustaceans. In all cases the rod bacteria were monocultures of morphologically identical bacteria and were remarkably similar among crustacean species. The potential significance of prolific microbial colonization in the hindguts of crustaceans deserves consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Abele, L. G. (1973). Taxonomy, distribution, and ecology of the genus Sesarma (Crustacea, Decapoda, Grapsidae) in eastern North America, with special reference to Florida. Am. Midl. Nat. 90: 375–386

    Google Scholar 

  • Abele, L. G. (1982). Systematics, the fossil record, and biogeography, Vol. 1. In: Bliss, D. E. (ed.) The biology of Crustacea. Academic Press, New York

    Google Scholar 

  • Atlas, R. M., Busdosh, M., Krichevsky, E. J., Kaneko, T. (1982). Bacterial populations associated with the Arctic amphipoid Boeckosimus affinis. Can. J. Microbiol. 28(1): 92–99

    Google Scholar 

  • Bayon, C. (1971). La cuticule proctodeale de la larve d'Oryctes nasicornis (Coleopteres Scarabeides). Etude au microscope electronique a balayage. J. Microscopie 11: 353–370

    Google Scholar 

  • Gignell, D. E. (1984). The arthropod gut as an environment for microorganisms. In: Anderson, J. M., Raynon, A. D. M., Walton, D. W. A. (eds.) Invertebrate-microbial interactions. Cambridge University Press, Cambridge, p. 205–227

    Google Scholar 

  • Boyle, P. I., Mitchell, R. (1978). Absence of microorganisms in crustacean digestive tracts. Science, N.Y. 200: 1157–1159

    Google Scholar 

  • Breznak, J. A. (1984). Biochemical aspects of symbiosis between termites and their intestinal microbiota. Chapter 7. In: Anderson, J. M., Raynon, A. D. M., Walton, D. W. A. (eds.) Invertebrate-microbial interactions. Cambridge University Press, Cambridge, p. 205–227

    Google Scholar 

  • Breznak, J. A., Prankratz, H. S. (1977). In situ morphology of the gut microbiota of wood-eating termites (Reticulitermes flavipes (Kollar) and Coptotermes formosanus (Shiraki). Appl. envirl. Microbiol. 33: 406–426

    Google Scholar 

  • Cameron, A. M. (1966). Some aspects of the behaviour of the soldier crab Mictyris longicarpus. Pacif. Sci. 20: 224–234

    Google Scholar 

  • Carpenter, J. L., Culliney, J. L. (1975) Nitrogen fixation in marine shipworms. Science, N.Y., 187: 551–552

    Google Scholar 

  • Colorni, A. (1985) A study on the bacterial flora of giant prawn Macrobrachium rosenbergii, larvae fed with Artemia salina nauplii. Aquaculture, Amsterdam, 49: 1–10

    Google Scholar 

  • Crawford, C. S., Taylor, E. C. (1984). Decomposition in arid environments: role of the detritivore gut. S. Afr. J. Sci. 80: 170–176

    Google Scholar 

  • Cruden, D. L., Markovetz, A. J. (1981). Relative numbers of selected bacterial forms in different regions of the cockcroach hindgut. Archs Microbiol. 129: 129–134

    Google Scholar 

  • Cutter, J. M., Rosenberg, F. A. (1971). The role of cellulolytic bacteria in the digestive processes of the shipworm. II. Isolation and some properties of a marine bacterial cellulase. Material Organismen 7: 225–239

    Google Scholar 

  • Day, J. H. (1974). A guide to marine life on South African shores. A. A. Balkema, Cape Town

    Google Scholar 

  • Deming, J. W., Tabor, P. S., Colwell, R. R. (1981). Barophilic growth of bacteria from intestinal tracts of deep-sea invertebrates. Microb. Ecol. 7: 85–94

    Google Scholar 

  • Dempsey, A. C., Kitting, C. L. (1987). Characteristics of bacteria isolated from penaeid shrimp. Crustaceana 52: 90–94

    Google Scholar 

  • Dempsey, A. C., Kitting, C. L., Rosson, R. A. (1989). Bacterial variability among individual penaeid shrimp digestive tracts. Crustaceana 56(3): 266–278

    Google Scholar 

  • Gray, E. H. (1942). Ecological and life history aspects of the redjointed fiddler crab, Uca minax (Le Conte), region of Solomons Island, Maryland. Chesapeake Biol. Lab. Publ. 51: 1–20

    Google Scholar 

  • Guerinot, M. L., Patriquin, D. G. (1981). The association of N2-fixing bacteria with sea-urchins. Mar. Biol. 62: 197–207

    Google Scholar 

  • Gunzl, H. (1991). The ultrastructure of the posterior gut and caecum in Alona affinis (Crustacea, Cladocera). Zoomorphology 110(3): 139–144

    Google Scholar 

  • Harris, J. M., Seiderer, L. J., Lucas, M. I. (1991). Gut microflora of two saltmarsh detritivore Thalassinid prawns, Upogebia africana and Callianassa kraussi. Microb. Ecol. 21: 63–82

    Google Scholar 

  • Hill, B. J. (1976). Natural food, foregut clearance-rate and activity of the crab Scylla serrata. Mar. Biol. 34: 109–116

    Google Scholar 

  • Hoffman, J. A., Katz, J., Bertness, M. D. (1984). Fiddler crab deposit-feeding and meiofaunal abundance in salt marsh habitats. J. exp. mar. Biol. Ecol. 82: 161–174

    Google Scholar 

  • Hood, M. A., Meyers, S. P., Colmer, A. R. (1971). Bacteria of the digestive tract of the white shrimp Penaeus setiferus. Bact. Proc. 71: G-147

  • Huq, A., Huq, S. A., Grimes, D. J., O'Brien, M. Chu, K. H., Capuzzi, J. M., Colwell, R. R. (1986). Colonization of the gut of the blue crab Callinectes sapidus by Vibrio cholerae. Appl. envirl Microbiol. 52(3): 586–588

    Google Scholar 

  • Juilffs, H. B., Wagele, J. W. (1987). Symbiontic bacteria in the gut of the blood-sucking Antarctic fish parasite Gnathia calva (Crustacea: Isopoda). Mar. Biol. 95(4): 493–499

    Google Scholar 

  • Kenway, M. J. (1981). Biological studies of Callianassa australiensis (Dana). M. Sc. Thesis, James Cook University of North Queensland, Australia

    Google Scholar 

  • Lasker, R., Giese, A. C. (1954). Nutrition of the sea urchin, Strongylocentrotus purpuratus. Biol. Bull. mar. biol. Lab. Woods Hole 106: 328–340

    Google Scholar 

  • Laughlin, R. A. (1982). Feeding habits of the blue crab Callinectes sapidus Rathbun, in the Apalachicola Estuary, Florida. Bull. mar. Sci. 32: 807–822

    Google Scholar 

  • Lynch, J. M., Hobbie, J. E. (eds.) (1988). Micro-organisms in action: concepts and applications in microbial ecology. Chapter 3. The animal environment. Blackwell Scientific Publications, London, p. 163–192

    Google Scholar 

  • Martin, M. M. (1984). The role of ingested enzymes in the digested processes of insects. In: anderson, J. M., Raynon, A. D. M., Walton, D. W. A. (eds.) Invertebrate-microbial interactions. Cambridge University Press, Cambridge, p. 155–177

    Google Scholar 

  • Martinez, J. C. (1982). The digestive microflora of Teredo navalis L. (Teredinidae; Bivalvia): metabolic properties and ultimate role in digestion. Bact. Mar. 331: 151–154

    Google Scholar 

  • Mattson, R. A. (1988). Occurrence and abundance of eccrinaceous fungi (Trichomycetes) in Brachyuran crabs from Tampa Bay, Florida. J. Crustacean Biol. (Lawrence, Kansas) 8(1): 20–30

    Google Scholar 

  • Maudlin, J. K., Rich, N. M., Cook, D. W. (1978). Amino acidsynthesis from 14C-acetate by normally and abnormally faunated termites Coptotermes formosanus. Insect Biochem. 8: 105–109

    Google Scholar 

  • McDermott, J. J. (1960). The predation of oysters and barnacles by crabs of the family Xanthidae. Proc. Pa Acad. Sci. 34: 199–211

    Google Scholar 

  • Mead, L. J., Khachatourians, G. G., Jones, G. A. (1988). Microbial ecology of the gut in laboratory stocks of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). Appl. envirl Microbiol. 54(5): 1174–1181

    Google Scholar 

  • Miller, D. C. (1961). The feeding mechanism of fiddler crabs, with ecological considerations of feeding adaptations. Zoological, N.Y. 46: 89–100

    Google Scholar 

  • Moriarty, D. J. W. (1990). Interactions of micro-organisms and aquatic animals, particularly the nutritional role of the gut microflora. In: Lesel, R. (ed.) Microbiology in poecilotherms. Elsevier Science Publishers, New York

    Google Scholar 

  • Morton, B. (1978) Feeding and digestion in shipworms. Oceanogr. mar. Biol. A. Rev. 16: 107–144

    Google Scholar 

  • Musgrove, R. J. (1988). Digestive ability of the freshwater crayfish Paranephrops zealandicus (White) (Parastacidae) and the role of microbial enzymes. Freshwat. Biol. 20: 305–314

    Google Scholar 

  • Noirot, C., Noirot-Timothee, C. (1976). Fine structure of the rectum in cockcroaches (Dictyoptera): general organization and intercellular junctions. Tissue Cell 8: 345–368

    Google Scholar 

  • Plante, C. J., Jumars, P. A., Baross, J. A. (1989). Rapid bacterial growth in the hindgut of a marine deposit feeder. Microb. Ecol. 18: 29–44

    Google Scholar 

  • Plate, C. J., Jumars, P. A., Baross, J. A. (1990). Digestive associations between marine detritivores and bacteria. A. Rev. Ecol. Syst. 21: 93–127

    Google Scholar 

  • Potrikus, C. J., Breznak, J. A. (1981). Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc. natn. Acad. Sci. U.S.A. 78: 4601–4605

    Google Scholar 

  • Quinn, R. H. (1986). Experimental studies of food ingestion and assimilation of the soldier crab, Mictyris longicarus Latrielle (Decapoda, Mictyridae). J. exp. mar. Biol. Ecol. 102: 167–181

    Google Scholar 

  • Ricketts, E. F., Calvin, J. (1962). Between Pacific Tides. Stanford University Press, Stanford

    Google Scholar 

  • Robertson, A. I. (1986). Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in northeastern Australia. J. exp. mar. Biol. Ecol. 102: 237–248

    Google Scholar 

  • Robertson, J. R., Fudge, J. A., Vermeer, G. K. (1981). Chemical and live feeding stimulants of the sand fiddler crab, Uca pugilator (Bosc). J. exp. mar. Biol. Ecol. 53: 47–64

    Google Scholar 

  • Ryan, E. P. (1956). Observations on the life histories and the distribution of the Xanthidae (mud crabs) of Chesapeake Bay. Am. Midl. Nat. 56: 138–162

    Google Scholar 

  • Schlegel, H. G. (1988) General microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Seed, R. (1980). Predator-prey relationships between the mud crab Panopeus herbstii, the blue crab Callinectes sapidus and the Atlantic ribbed mussel Guekensia (=Modiolus) demissa. Estuar. cstl. mar. Sci. 11: 445–458

    Google Scholar 

  • Sleeter, T. D., Boyle, P. J., Cundell, A. M., Mitchell, R. (1978). Relationships between marine micro-organisms and the woodboring isopod Limnoria tripunctata. Mar. Biol. 45: 329–336

    Google Scholar 

  • Sochard, M. R., Wilson, D. F., Austin, B., Colwell, R. R. (1979). Bacteria associated with the surface and gut of marine copepods. Appl. envirl Microbiol. 37: 570–579

    Google Scholar 

  • Sugita, H., Takahashi, T., Kanemoto, F. I., Deguchi, Y. (1987 a) Aerobic bacterial flora in the digestive tracts of freshwater shrimp Palaemon paucidens acclimated with seawater. Nippon Suisan Gakk. 53(3): 511

    Google Scholar 

  • Sugita, H., Ueda, R., Berger, L. R., Deguchi, Y. (1987 b). Microflora in the gut of Japanese coastal crustacea. Bull. Jap. Soc. Scient. Fish. 53(9): 1647–1655

    Google Scholar 

  • Teal, J. M. (1962). Energy flow in the salt marsh ecosystem of Georgia. Ecology 43(4): 387–397

    Google Scholar 

  • Wainwright, P. F., Mann, K. H. (1982). Effect of antimicrobial substances on the ability of the mysid shrimp Mysis stenolepis to digest cellulose. Mar. Ecol. Prog. Ser. 7: 309–313

    Google Scholar 

  • Whetstone, J. M., Eversole, A. G. (1981). Effects of size and temperature of mud crab, Panopeus herbstii, predation on hard clams, Mercenaria mercenaria. Estuaries 4: 152–156

    Google Scholar 

  • Zachary, A., Colwell, R. R. (1979). Gut-associated microflora of Limnoria tripunctata in marine creosote-treated wood pilings. Nature, Lond. 282: 716–717

    Google Scholar 

  • Zachary, A., Parrish, K. K., Bultman, J. D. (1983). Possible role of marine bacteria in providing the creosote-resistance of Limnoria tripunctata. Mar. Biol. 75(1): 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, J.M. Widespread occurrence of extensive epimural rod bacteria in the hindguts of marine Thalassinidae and Brachyura (Crustacea: Decapoda). Marine Biology 116, 615–629 (1993). https://doi.org/10.1007/BF00355480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355480

Keywords

Navigation