Skip to main content

Advertisement

Log in

Intra-clonal variation in the red seaweed Gracilaria chilensis

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The phenotypic plasticity often found in seaweed populations has been explained only from the perspective of inter-population or inter-individual differences. However, many seaweeds grow and propagate by fragmentation of genetically identical units, each with the capacity to function on its own. If significant differences in performance exist among these supposedly identical units, such differences should be expressed upon the release and growth of these units. In this study we document two such types of variation in the red seaweed Gracilaria chilensis. Populations of sporelings, each grown under similar culture conditions and derived from carpospores shed by the same cystocarp exhibit significant differences in growth. In this species, each cystocarp develops from a simple gametic fusion, and cystocarp fusions occur too infrequently to account for the growth differences observed among recruits. In adult thalli, branches (ramets) derived from the same thallus (genet) and grown under similar conditions exhibit significant variation in growth rates and morphology. These findings have several implications. They suggest that carpospore production is not only an example of zygote amplification but that it also could increase variability among mitotically replicated units. Intra-clonal variability followed by fragmentation and re-attachment may increase intra-population variation which, in species of Gracilaria, is often larger than inter-population variation. In addition, the existence of intra-clonal variability suggests that strain selection in commercially important species may require a more continuous screening of highquality strains because of frequent genotypic or phenotypic changes in the various cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bolton, J. J., German, J., Lüning, K., (1983). Hybridizations between Atlantic and Pacific representatives of the Simpleces section of Laminaria (Phaeophyta). Phycologia 22: 133–140

    Google Scholar 

  • Bonga, J. M., Durzan, D. J. (eds.), (1985). Tissue culture in forestry. Martinus Nijhoff/Dr. Junk Publishers, Dordrecht, Boston, Lancaster

    Google Scholar 

  • Buss, L. W. (1985). The uniqueness of the individual revisited. In: Jackson, J. B. C., Buss, L. W., Cook, R. C. (eds.) Population biology and evolution of clonal organisms. Yale University Press, New Haven and London, p. 467–505

    Google Scholar 

  • Carroll, M. A. (1991). Distribution of morphological variation within populations of Gracilaria. J. Phycol. 21 (Suppl.): p. 13

    Google Scholar 

  • Collantes, G. E., Mello, C. A., Candia, A. J. (1990) Micropropagación clonal, una alternativa biotecnológica en el cultivo de macroalgas marinas chilenas de importancia económica. Archos Biol. Med. exp., Chile 23: 131–140

    Google Scholar 

  • Cook, R. E. (1985). Growth and development in clonal plant populations. In: Jackson, J. B. C., Buss, L. W., Cook, R. C. (eds.) Population biology and evolution of clonal organisms. Yale University Press, New Haven and London, p. 259–269

    Google Scholar 

  • Correa, J. A., McLachlan, J. L. (1991). Endophytic algae of Chondrus crispus (Rhodophyta). III. Host specifity. J. Phycol. 27: 448–459

    Google Scholar 

  • Correa, J. A., Nielsen, R., Grund, D. W. (1988). Endophytic algae of Chondrus crispus (Rhodophyta). II Acrochaete heteroclada sp. nov., A. operculata sp. nov., and Phaeophila dendroides (Chlorophyta). J. Phycol. 24: 528–539

    Google Scholar 

  • Durako, M. J., Dawes, C. J. (1980). A comparative seasonal study of two populations of Hynea musciformis from the east and west coasts of Florida, USA. I. Growth and chemistry. Mar. Biol. 59: 151–156

    Google Scholar 

  • Espinoza, J., Chapman, A. R. O. (1983). Ecotypic differentiation of Laminaria longicruris in relation to seawater nitrate concentrations. Mar. Biol. 74: 213–218

    Google Scholar 

  • Fredericq, S., Hommersand, M. H. (1989). Proposal of the Gracilariales Ord. Nov. (Rhodophyta) based on an analysis of the reproductive development of Gracilaria verrucosa. J. Phycol. 25: 213–227

    Google Scholar 

  • Gerard, V. A. (1988). Ecotypic differentiation in light-related traits of the kelp Laminaria saccharina. Mar. Biol. 97: 25–36

    Google Scholar 

  • Guiry, M. D. (1978). The importance of sporangia in the classification of the Florideophyceae. In: Irvine, D. E. G., Price, J. H. (eds.) Modern approaches to the taxonomy of the red and brown algae. Academic Press, London, p. 111–144. (Syst. Ass. Spec. Vol. No. 10)

    Google Scholar 

  • Hanisak, M. D., Littler, M. M., Littler, D. S. (1988). Significance of macroalgal polymorphism: intraspecific tests of the functional-form model. Mar. Biol. 99: 157–165

    Google Scholar 

  • Hanisak, M. D., Littler, M. M., Littler, D. S. (1990). Application of the functional-form model to the culture of seaweeds. Hydrobiologia 204/205: 73–77

    Google Scholar 

  • Hanisak, M. D., Ryther, J. H. (1984). Cultivation biology of Gracilaria tikvahiae in the United States. Hydrobiologia 116/117: 295–298

    Google Scholar 

  • Harper, J. L. (1985). Modules, branches and the capture of resources. In: Jackson, J. B. C., Buss, L. W., Cook, R. C. (eds.) Population biology and evolution of clonal organisms. Yale University Press. New Haven and London, p. 1–33

    Google Scholar 

  • Harper, J. L., Rosen, B. R., White, J. (eds.) (1986). The growth and form of modular organisms. Phil. Trans. R. Soc. (Ser. B) 313: 1–250

    Google Scholar 

  • Hawkes, M. W. (1990). Reproductive strategies. In: Cole, K. M., Sheath, R. G. (eds.), Biology of the red algae. Chapter 17. Cambridge University Press, Cambridge Mass., USA p. 455–476

    Google Scholar 

  • Hodgson, L. M. (1984). Desiccation tolerance of Gracilaria tikvahiae (Rhodophyta). J. Phycol. 20: 444–446

    Google Scholar 

  • Hommersand, M. H., Fredericq, S. (1988). An investigation of cystocarp development in Gelidium pteridifolium with a revised description of the Gelidiales (Rhodophyta). Phycologia 27: 254–272

    Google Scholar 

  • Jackson, J. B. C., Buss, L. W., Cook, R. E. (1985). Clonality: a preface. In: Jackson, J. B. C., Buss, L. W., Cook, R. E. (eds.) Population biology and evolution of clonal organisms. Yale University Press, New Haven and London, p. ix-xi

    Google Scholar 

  • Lignell, A., Pedersen, M. (1989). Agar composition as function of morphology and growth rate. Studies on some morphological strains of Gracilaria secundata and Gracilaria verrucosa (Rhodophyta). Botanica mar. 32: 219–227

    Google Scholar 

  • Lüning, K. (1980). Control of algal life-history by day-length and temperature. In: Price, G. H., Irvine, D. E. E., Farnham, W. F. (eds.). The shore environment: methods and ecosystems. Academic Press, London, p. 915–945. (Syst. Ass. Spec. Vol. No. 17)

    Google Scholar 

  • McLachlan, J. (1973). Growth media, marine. In: Stein, J. R. (ed.) Handbook of phycological methods. Cambridge University Press, Cambridge, Mass., USA, p. 25–51

    Google Scholar 

  • Müller, D. G. (1991 a). Mendelian segregation of a virus genome during host meiosis in the marine brown alga Ectocarpus siliculosus. J. Pl. Physiol. 137: 739–743

    Google Scholar 

  • Müller, D. G. (1991 b). Marine virioplankton produced by infected Ectocarpus siliculosus (Phaeophyceae). Mar. Ecol. Prog. Ser. 76: 101–102

    Google Scholar 

  • Müller, D. G. (1992). Intergeneric transmission of a marine plant DNA virus. Naturwissenschaften 79: 37–39

    Google Scholar 

  • Müller, D. G., Kawai, H., Stache, B., Lanka, S. (1990). A virus infection in the marine brown alga Ectocarpus siliculosus (Phaeophyceae). Botanica Acta (Ber. dt. bot. Ges.) 103: 72–82

    Google Scholar 

  • Patwary, M. V., Van der Meer, J. P. (1982). Genetics of Gracilaria tikvahiae (Rhodophyta). VIII. Phenotypic and genetic characterization of some selected morphological mutants. Can. J. Bot. 60: 2556–2564

    Google Scholar 

  • Patwary, M. V., Van der Meer, J. P. (1983 a). Genetics of Gracilaria tikvahiae (Rhodophyta). IX. Some properties of agars extracted from morphological mutants. Botanica mar. 26: 295–299

    Google Scholar 

  • Patwary, M. V., Van der Meer, J. P. (1983 b). Growth experiments on morphological mutants of Gracilaria tikvahiae (Rhodophyta). Can. J. Bot. 61: 1654–1659

    Google Scholar 

  • Patwary, M. V., Van der Meer, J. P. (1983 c) Improvement of Gracilaria tikvahiae (Rhodophyceae) by genetic modification of thallus morphology. Aquaculture, Amsterdam 33: 207–214

    Google Scholar 

  • Peckol, P., Ramus, J. (1985). Physiological differentiation of North Carolina nearshore and offshore populations of Sargassum filipendula. C. Ag. Botanica mar. 28: 319–325

    Google Scholar 

  • Prieto, I., Westermeier, R., Müller, D. (1991). Variación de fases reproductivas de Gracilaria chilensis en condiciones de cultivo de terreno y laboratorio. Revta chil. Hist. nat. 64: 343–352

    Google Scholar 

  • Rice, E. L., Kenchington, T. J., Chapman, A. R. O. (1985). Intraspecific geographic-morphological variation patterns in Fucus dictichus and F. evanescens. Mar. Biol. 88: 207–215

    Google Scholar 

  • Russell, G. (1986). Variation and natural selection in marine macroalgae. Oceanogr. mar. Biol. A. Rev. 24: 309–377

    Google Scholar 

  • Santelices, B., Doty, M. S. (1989). A review of Gracilaria farming. Aquaculture, Amsterdam, 78: 95–133

    Google Scholar 

  • Searles, R. B. (1980). The strategy of the red algal life history. Am. Nat. 115: 113–120

    Google Scholar 

  • Sheath, R. G., Cole, K. M. (1984). Systematics of Bangia (Rhodophyta) in North America. I. Biogeographic trends in morphology. Phycologia 23: 383–396

    Google Scholar 

  • Siegel, S., Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences. McGraw Hill, Inc., New York.

    Google Scholar 

  • Silander, J. A. (1985). Microevolution in clonal plants. In: Jackson, J. B. C., Buss, L. W., Cook, R. C. (eds.) Population biology and evolution of clonal organisms. Yale University Press, New Haven and London, p. 107–152

    Google Scholar 

  • Snedecor, G. W., Cochrane, W. G. (1967). Statistical methods. 6th edn. Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Van der Meer, J. P. (1987). Using genetic markers in phycological research. Hydrobiologia 151/152: 49–56

    Google Scholar 

  • Van der Meer, J. P., Todd, E. R. (1977). Genetics of Gracilaria sp. (Rhodophyceae, Gigartinales). IV. Mitotic recombinations and its relationship to mixed phases in the life history. Can. J. Bot. 55: 2810–2817

    Google Scholar 

  • Van der Meer, J. P., Zhang, X. (1988). Similar unstable mutations in three species of Gracilaria (Rhodophyta). J. Phycol. 24: 198–202

    Google Scholar 

  • Watkinson, H. R., White, J. (1986). Some life-history consequences of modular constructions in plants. Phil. Trans. R. Soc. (Ser. B) 313: 31–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santelices, B., Varela, D. Intra-clonal variation in the red seaweed Gracilaria chilensis . Marine Biology 116, 543–552 (1993). https://doi.org/10.1007/BF00355472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355472

Keywords

Navigation