Skip to main content
Log in

Patterns of temperature adaptation in North American Atlantic coastal actinians

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Although acutely measured rate processes in coelenterates show close correlation with the Van't Hoff Q10 rule and the distribution of many coelenterate groups is correlated with temperature, little is known about coelenterate temperature adaptation. Analysis of lethal temperatures shows that the southern distribution of 3 species of North Atlantic actinians is correlated with their upper lethal temperature. Oxygen consumption data from acute measurements indicate conformity to the Q10 rule. Oxygen consumption data from animals pre-exposed to various temperatures indicate that oxygen consumption is capable of acclimation to temperature. Metridium senile from Massachusetts shows positive acclimation, typical of a poikilotherm partially regulating its metabolic rate in response to temperature change. Two species from Virginia, Haliplanella luciae and Diadumene leucolena, appear to show a reverse pattern. Their response includes encystment and negative adjustment of metabolic rate, showing evasion rather than regulation in response to environmental change. Temperature has a marked effect on parameters of the activity pattern of Diadumene leucolena, but the temperature sensitivity of activity is not correlated with that of oxygen consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Allee, W. C.: Studies in marine ecology: IV. The effect of temperature in limiting the geographical range of invertebrates of the Woods Hole littoral. Ecology 4, 341–354 (1923).

    Google Scholar 

  • Batham, E. J. and C. F. A. Pantin: Inherent activity in the sea-anemone, Metridium senile (L.) J. exp. Biol. 27, 290–301 (1950a).

    Google Scholar 

  • — Phases of activity in the sea-anemone, Metridium senile (L.), and their relation to external stimuli. J. exp. Biol. 27, 377–399 (1950b).

    Google Scholar 

  • — Muscular and hydrostatic action in the sea-anemone Metridium senile (L.). J. exp. Biol. 27, 264–289 (1950c).

    Google Scholar 

  • Cargo, D. C. and L. P. Schultz: Further observations on the biology of the sea nettle and jellyfishes in Chesapeake Bay. Chesapeake Sci. 4, 209–220 (1967).

    Google Scholar 

  • Coast and Geodetic Survey: Surface water temperature and salinity Atlantic Coast North and South America. C. & G.S. Publication 31-1, 76 pp. Washington: Government Printing Office 1960.

    Google Scholar 

  • Cones, H. N., Jr. and D. S. Haven: Distribution of Chrysaora quinquecirrha in the York River. Chesapeake Sci. 10, 75–84 (1969).

    Google Scholar 

  • Crowell, S.: Differential responses of growth zones to nutritive level, age, and temperature in the colonial hydroid Campanularia. J. exp. Zool. 134, 63–90 (1957).

    Google Scholar 

  • — and M. Rusk: Growth of Campanularia colonies. Biol. Bull. mar. biol. Lab., Woods Hole 99, 357 (1950).

    Google Scholar 

  • Field, L.: Sea anemones and corals of Beaufort, N.C. Bull. Duke Univ. mar. Stn 5, 1–39 (1949).

    Google Scholar 

  • Gwilliam, G. F.: Neuromuscular physiology of a sessile seyphozoan. Biol. Bull. mar. biol. Lab., Woods Hole 119, 454–473 (1960).

    Google Scholar 

  • Hall, D. M. and C. F. A. Pantin: The nerve net of the actinozoa V. Temperature and facilitation in Metridium senile. J. exp. Biol. 14, 71–78 (1937).

    Google Scholar 

  • Hand, C.: The sea anemones of Central California. III. The acontiarian anemones. Wasmann J. Biol. 13, 189–251 (1955).

    Google Scholar 

  • Harvey, E. N.: The effect of different temperatures on the medusa Cassiopea, with special reference to the rate of conduction of the nerve impulse. Pap. Tortugas Lab. 3, 27–39 (1911).

    Google Scholar 

  • Hoffmann, R. J. and C. P. Mangum: The function of coelomic cell hemoglobin in the polychaete Glycera dibranchiata. Comp. Biochem. Physiol. (In press).

  • Lenhoff, H. M. and W. F. Loomis: Environmental factors controlling respiration in Hydra. J. exp. Zool. 134, 171–181 (1957).

    Google Scholar 

  • Mangum, C. P. and C. Sassaman: Temperature sensitivity of active and resting metabolism in a polychaetous annelid. Comp. Biochem. Physiol. 30, 111–116 (1969).

    Google Scholar 

  • Mayor, A. G.: Ctenophores of the Atlantic Coast of North America. Publs Carnegie Instn 162, 1–58 (1912).

    Google Scholar 

  • — The effects of temperature upon tropical marine animals. Pap. Tortugas Lab. 6, 1–24 (1914).

    Google Scholar 

  • McCary, A.: The effect of temperature on growth and reproduction in Craspedacusta sowerbi. Ecology 40, 158–162 (1959).

    Google Scholar 

  • McClendon, J. F.: The direct and indirect calorimetry of Cassiopea xamachana. J. biol. Chem. 32, 275–296 (1917).

    Google Scholar 

  • Newell, R. C. and H. R. Nobthcroft: A re-interpretation of the effect of temperature on the metabolism of certain marine invertebrates. J. Zool., Lond. 151, 277–298 (1967).

    Google Scholar 

  • Pantin, C. F. A. and M. Vianna Dias: Excitation phenomena in an actinian (Bunodactis sp?) from Guanabara Bay. Anais Acad. bras. Cienc. 24, 335–349 (1952).

    Google Scholar 

  • Parker, G. H.: The effects of the past winter on the occurrence of Sagartia luciae Verrill. Am. Nat. 53, 280–281 (1919).

    Google Scholar 

  • — Activities of colonial animals II. Neuromuscular movements and phosphorescence of Renilla. J. exp. Zool. 31, 475–515 (1920).

    Google Scholar 

  • Pieron, H.: De l'influence de l'oxygene dissous sur le comportement des invertebres marins. II. Quelque moyens de défense contre l'asphyxie. C.r. Séanc. Soc. Biol. 64, 955–957 (1908).

    Google Scholar 

  • Prosser, C. L. and F. A. Brown, Jr.: Comparative animal physiology, 688 pp. Philadelphia: Saunders 1961.

    Google Scholar 

  • Roberts, J. L.: Thermal acclimation of metabolism in the crab, Pachygrapsus crassipes Randall. II. Mechanisms and the influence of season and latitude. Physiol. Zoöl. 30, 242–255 (1957).

    Google Scholar 

  • Sellers, R. and J. L. Roberts: The influence of temperature and photoperiod on rhythmic potentials and growth in Hydra pseudoligactis. Am. Zool. 4, 55 (1964).

    Google Scholar 

  • Shoup, C. S.: Salinity of the medium and its effect on respiration in the sea-anemone. Ecology 13, 81–85 (1932).

    Google Scholar 

  • Tribe, M. A. and K. Bowler: Temperature dependence of “standard metabolic rate” in a poikilotherm. Comp. Biochem. Physiol. 25, 427–436 (1968).

    Google Scholar 

  • Vernon, H. M.: The respiratory exchange of the lower marine invertebrates. J. Physiol., Lond. 19, 18–70 (1895).

    Google Scholar 

  • Wass, M. L.: Check list of the marine invertebrates of Virginia. Va. Inst. mar. Sci. Rep. No. 24 (3rd revision) 55 pp. (1965).

  • Weese, A. O., and M. T. Townsend: Some reactions of the jellyfish Aequoria. Publs Puget Sound mar. biol. Stn 3, 117–128 (1921).

    Google Scholar 

  • Wolf, E.: Temperature characteristics for pulsation in Gonionemus. J. gen. Physiol. 11, 547–562 (1928).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. L. Voss, Miami

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sassaman, C., Mangum, C.P. Patterns of temperature adaptation in North American Atlantic coastal actinians. Marine Biology 7, 123–130 (1970). https://doi.org/10.1007/BF00354915

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354915

Keywords

Navigation