Journal of Materials Science

, Volume 29, Issue 23, pp 6281–6286 | Cite as

Strength analysis of random short-fibre-reinforced metal matrix composite materials

  • Y. T. Zhu
  • G. Zong
  • A. Manthiram
  • Z. Eliezer


A theory to analyse the strength of composite materials with randomly oriented short fibres has been developed. The short fibres are assumed to be uniformly distributed and randomly oriented in three dimensions. The non-homogeneous deformation within the composite has been taken into account in the strength calculation. The influences of thermal stress in the short fibres, the short-fibre dispersion hardening and the dislocation density in the matrix on the composite strength have all been estimated, and the strengthening mechanisms involved are discussed. A comparison with previous strength theory suggests that the present theory gives a better agreement with experimental data, and can be used to explain some experimental phenomena that remain unsolved.


Polymer Composite Material Thermal Stress Dislocation Density Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Friend, J. Mater. Sci. 22 (1987) 3005.CrossRefGoogle Scholar
  2. 2.
    P. K. Liaw, J. G. Greggi and W. A. Logsdon, ibid. 22 (1987) 1613.CrossRefGoogle Scholar
  3. 3.
    B. W. Rosen, in “Fibre Composite Materials” (American Society for Metals, Metal Park, OH, 1964) p. 37.Google Scholar
  4. 4.
    Y. T. Zhu, B. L. Zhou, G. H. He and Z. G. Zheng, J. Compos. Mater. 23 (1989) 280.CrossRefGoogle Scholar
  5. 5.
    D. Hull, “An Introduction to Composite Materials” (Cambridge University Press, London, 1981) p. 200.Google Scholar
  6. 6.
    Z. Gao, K. L. Reifsnider and G. Carman, J. Compos. Mater. 26 (1992) 1678.CrossRefGoogle Scholar
  7. 7.
    P. E. Chen, Polym. Eng Sci. 11 (1971) 51.CrossRefGoogle Scholar
  8. 8.
    J. C. Halpin and J. L. Kardos, ibid. 18 (1978) 496.CrossRefGoogle Scholar
  9. 9.
    H. Fukuda, T. W. Chou and K. Kawata, in “Proceedings of Japan-US Conference on Composite Materials: Mechanics, Mechanical Properties and Fabrication”, Tokyo, 12–14 January 1981, edited by K. Kawata and T. Akasaka (Applied Science Publisher for The Japan Society for Composite Materials, Tokyo, 1982) p. 181.Google Scholar
  10. 10.
    C. M. Friend, Scripta Metall. 23 (1989) 33.CrossRefGoogle Scholar
  11. 11.
    R. W. Hertzberg, “Deformation and fracture mechanics of Engineering Materials” (Wiley, New York, 1989) p. 136.Google Scholar
  12. 12.
    R. J. Arsenault and R. M. Fisher, Scripta Metall. 17 (1983) 67.CrossRefGoogle Scholar
  13. 13.
    Y. T. Zhu, unpublished work (1992).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Y. T. Zhu
    • 1
  • G. Zong
    • 1
  • A. Manthiram
    • 1
  • Z. Eliezer
    • 1
  1. 1.Center for Materials Science and EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations