Journal of Materials Science

, Volume 29, Issue 23, pp 6079–6084 | Cite as

Cementite precipitation during tempering of martensite under the influence of an externally applied stress

  • J. W. Stewart
  • R. C. Thomson
  • H. K. D. H. Bhadeshia


The precipitation of cementite under the influence of an externally applied stress, during the tempering of martensite in steels, is investigated using transmission electron microscopy. The stress appears to favour the development of particular crystallographic variants of cementite in any given plate of martensite. Hence, a Widmanstätten array of cementite particles in a normally tempered sample changes to an array consisting of just one variant in stress-tempered samples. The results are discussed in the context of the mechanism of carbide precipitation during the lower bainite reaction.


Polymer Precipitation Microscopy Electron Microscopy Transmission Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Hultgren, Jernkontorets Ann. 135 (1951) 403.Google Scholar
  2. 2.
    J. S. Bowles, B. C. Muddle and C. M. Wayman, Acta Metall. 25 (1977) 513.CrossRefGoogle Scholar
  3. 3.
    S. V. Tsivinsky, L. I. Kogan and R. I. Entin, in “Problems of Metallography and the Physics of Metals”, edited by B. Ya. Lybubov (State Scientific Press, Moscow, 1955); translation published by Consultants Bureau, New York, 1959) p. 185.Google Scholar
  4. 4.
    J. Chance and N. Ridley, Metall. Trans. 21A (1981) 1205.CrossRefGoogle Scholar
  5. 5.
    R. B. Carruthers and M. J. Collins, in Conference Proceedings, “Quantitative Microanalysis with High Spatial Resolution” (The Metals Society, London, 1981) p. 108.Google Scholar
  6. 6.
    X. Du, J. A. Whiteman, R. C. Thomson and H. K. D. H. Bhadeshia, Mater. Sci. Engng A 155 (1992) 197.CrossRefGoogle Scholar
  7. 7.
    S. S. Babu, K. Hono and T. Sakurai, Appl. Surf. Sci. 67 (1993) 321.CrossRefGoogle Scholar
  8. 8.
    W. Hume-Rothery, G. V. Raynor and A. T. Little, Arch. Eisenhüttenwes. 145 (1942) 143.Google Scholar
  9. 9.
    K. W. Andrews, Acta Metall. 11 (1963) 939.CrossRefGoogle Scholar
  10. 10.
    H. C. Yakel, Int. Met. Rev. 30 (1985) 17.CrossRefGoogle Scholar
  11. 11.
    P. J. Sandvik, Metall. Trans. 13A (1982) 789.CrossRefGoogle Scholar
  12. 12.
    T. Nakamura and S. Nagakura, in Proceedings of International Conference on Martensitic Transformations (ICOMAT-86), Nara, Japan, August 1986 (Japan Institute of Metals, Aoba Aramaki, Japan 1986) p. 386.Google Scholar
  13. 13.
    K. A. Taylor, G. B. Olson, M. Cohen and J. B. Vander Sande, Metall. Trans. 20A (1989) 2749.CrossRefGoogle Scholar
  14. 14.
    K. A. Taylor, L. Chang, G. B. Olson, G. D. W. Smith, M. Cohen and J. B. Vander Sande, ibid. 20A (1989) 2772.Google Scholar
  15. 15.
    A. Matsuzaki, H. K. D. H. Bhadeshia and H. Harada, in Proceedings of G. R. Speich Symposium, Montreal, 1992 (Iron and Steel Society, AIME, Warrendale, PA, USA, 1992) p. 47.Google Scholar
  16. 16.
    H. K. D. H. Bhadeshia, Met. Sci. 16 (1982) 159.CrossRefGoogle Scholar
  17. 17.
    “MTDATA-Metallurgical and Thermochemical Databank” (National Physical Laboratory, Teddington, UK, 1989).Google Scholar
  18. 18.
    J. R. Patel and M. Cohen, Acta Metall. 1 (1953) 531.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. W. Stewart
    • 1
  • R. C. Thomson
    • 1
  • H. K. D. H. Bhadeshia
    • 1
  1. 1.Department of Materials Science and MetallurgyUniversity of Cambridge/JRDCCambridgeUK

Personalised recommendations