Skip to main content
Log in

Processing aspects of glass-nicalon fibre and interconnected porous aluminium nitride ceramic and glass composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass matrix-fibre and glass infiltrated ceramic composites with interconnected phases have been shown to have the potential for displaying optimum thermal conductivity and dielectric constant at 1 MHz making them useful as substrates for electronic packaging. Ceramic (Nicalon and silicon carbide grade (SCS)) fibre-borosilicate glass composites were fabricated using tape casting processes combined with pressure and pressureless sintering techniques. Experiments were also conducted to process AIN ceramics with interconnected porous channels which were then hot infiltrated with borosilicate glass. Results of optical characterization of the composites indicate that infiltration of Nicalon cloth with glass is achieved by hot pressing, while the tape casting and lamination approach followed by sintering is useful for fabricating composites of glass and Nicalon tows. The sintered aluminium nitride ceramics are comprised of ≈28% (volume fraction) interconnected pores. Hot infiltration yielded ≈100 μm penetration of borosilicate glass into the pores of the nitride ceramic. The paper discusses the various scientific aspects involved in processing the glass-fibre and porous AIN composites containing 3-d interconnected pores. Results of the microstructural characterization of these composites are discussed particularly in regards to the desired microstructure essential for these composites to be useful as substrates in electronic packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ‘Microelectronic Packaging Handbook’, Edited by R. R. Tummala and E. J. Rymaszewski, (Van Nostrand Reinhold, New York 1989).

    Google Scholar 

  2. G. Geiger, Bull Amer Ceram Soc 69 (1990) 1131.

    Google Scholar 

  3. E. M. Rabinovich, J. Electronic Packaging 111 (1989) 183.

    Article  Google Scholar 

  4. R. R. Tummala and R. B. Shaw, High Tech Ceramics, edited by P. Vincenzini, (Elsevier Science Publishers B.V. Amsterdam, 1987) p. 75.

    Google Scholar 

  5. J. L. Sprague, IEEE Transactions on Components, Hybrids, and Manufacturing Technology 13 (1990) 390.

    Article  CAS  Google Scholar 

  6. K. R. Kinsman, J. Metals 6 (1988) 7.

    Google Scholar 

  7. J. U. Knickerbocker and M. S. Cole, Advanced Packaging January/February (1995) 20.

    Google Scholar 

  8. R. L. Brown, A. A. Shapiro and P. W. Polinski, The Intnl. J. Microelectronics and Elec. Packaging 16 (1993) 328.

    Google Scholar 

  9. N. Kuramoto, H. Taniguchi and I. Aso, Cerm Bull 68 (1989) 883.

    CAS  Google Scholar 

  10. N. Kuramoto and H. Taniguchi, J. Mater. Sci. Lett. 3 (1984) 471.

    Article  CAS  Google Scholar 

  11. T. B. Troczynski and P. S. Nickolson, J. Amer. Ceram. Soc. 72 (1989) 1488.

    Article  CAS  Google Scholar 

  12. N. S. van Damme, S. M. Richard and S. R. Wizer, ibid 72 (1989) 1409.

    Article  Google Scholar 

  13. Atsuhiko Hiai, Takaishi: Kazuo Wakimura, Sennan: Masao Tanaka, Sakai: Takao Tanaka Shimonoseki, Mitsui Toatsu Chemicals Inc, Tokyo, Japan, U.S. Patent No. 4869925 (1989).

  14. U. Klabunde, W. Chester, E. J. Newitt, C. Ford, F. N. Tebbe, H. Del, U.S. Patent No. 4865830, (1989).

  15. S. L. Dole, R. H. Arendt, W. D. Pasco, U.S. Pat. No. 4843042, (1989).

  16. S. Kuratani, K. Uno, S. Mizuno, H. Sakuramoto and S. Nishiyama, U.S. Pat. No. 4843038, (1989).

  17. S. Mizuno, S. Kuratani, K. Uno, H. Sakuramoto and S. Nishiyama, U.S. Pat No. 4833108, (1989).

  18. A. Ikegami, K. Otsuka and T. Yasuda, in: “High Thermal Conductive SiC Substrate and Its Applications”, Proceedings of the 5th European Hybrid Microelectronics Conference, Stresa, Italy (International Society for Hybrid Microelectronics, Stresa, 1985) 465.

    Google Scholar 

  19. R. R. Tummala, J. Amer. Ceram. Soc. 74 (1991) 895.

    Article  CAS  Google Scholar 

  20. A. J. Blodgett, jr., Scientific American 249 (1983) 2.

    Article  Google Scholar 

  21. T. J. Mroz and E. A. Groat, paper E-65-94, presented at the 94th. Annual meeting of the American Ceramic Society held in Indianapolis, IN, April 24–28, 1994.

  22. J. F. Macdowell, G. H. Beall, in Proceedings of the 1st International Science and Technology conference, “Materials and Processes for Microelectronic Systems”, Ceramic Transactions, edited by K. M. Nair, R. Pohanka and R. C. Buchanan, Vol. 15 (1989) 259.

  23. Idem. Materials Research Society Symposium Proceedings, “Advanced Electronic Packaging Materials”, edited by A. T. Barfknecht, J. P. Partridge, C. J. Chen and Che-Yu Li, Vol. 167 (1989).

  24. R. S. Hsu, P. N. Kumta and T. P. Feist, J. Mater. Sci., 30 (1995) 3123.

    Article  CAS  Google Scholar 

  25. V. Ramakrishnan and N. Jayaraman, Ibid 27 (1992) 2423.

    Article  CAS  Google Scholar 

  26. M. Barsoum and A. Elkind, Ibid 30 (1995) 69.

    Article  CAS  Google Scholar 

  27. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics” 2nd Edn (John Wiley & Sons, NY, 1976) p. 635.

    Google Scholar 

  28. A. J. Moulson and J. M. Herbert, “Electroceramics, Materials, Properties and Applications”, (Chapman and Hall London 1990) p. 79.

    Google Scholar 

  29. L. E. Cross and T. R. Gururaja, Materials Research Society Symposium Proceedings, “Electronic Packaging Materials Science II”, edited by K. A. Jackson, R. C. Pohanka, D. R. Uhlmann and D. R. Ulrich, Vol. 72 (1986).

  30. D. P. Button, B. A. Yost, R. H. French, W. Y. Hsu, J. D. Bolt, M. A. Subramanian, H. M. Zhang, R. E. Giedd, A. J. Whitaker and D. G. Onn, Advances in Ceramics, Vol. 26, “Ceramics Substrates and Packages for Electronic Applications”, edited by M. F. Yan, K. Niwa, H. M. O'Bryan, Jr., and W. S. Young, (American Ceramic Society 1989) pp. 87–105.

  31. I. Webman, J. Jortner and M. H. Cohen, Phys. Rev. B 11 (1975) 2885.

    Article  Google Scholar 

  32. W. Y. Hsu, T. D. Gierke, and C. J. Molnar, Macromolecules 16 (1983) 1945.

    Article  CAS  Google Scholar 

  33. S. Prochazka and C. F. Bobik, Materials Science Research, Vol. 13, “Sintering Processes”, edited by G. C. Kuczynski, Proceedings. 5th International Conference on Sintering and Related Phenomena, University of Notre Dame, Indiana, June 18–20 (1979) 321.

    Google Scholar 

  34. C. M. Gustafson, R. E. Dutton and R. J. Kerans, J. Amer. Ceram. Soc. 78 (1995) 1423.

    Article  CAS  Google Scholar 

  35. N. P. Bansal and R. H. Doremus, “Handbook of Glass Properties”, (Academic Press, London 1986).

    Google Scholar 

  36. R. H. Doremus, “Glass Science”, (John Wiley & Sons, New York, 1973) 284.

    Google Scholar 

  37. T. Mah, Private Conversation, (1993).

  38. X. J. Ning, P. Pirouz and S. C. Farmer, J. Amer. Ceram. Soc. 76 (1993) 2033.

    Article  CAS  Google Scholar 

  39. J. A. Dicarlo, J. Mater. Sci. 21 (1986) 217.

    Article  CAS  Google Scholar 

  40. J. I. Eldridge and F. S. Honecy, J. Vac. Sci. Technol. A8 (1990) 2101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumta, P.N. Processing aspects of glass-nicalon fibre and interconnected porous aluminium nitride ceramic and glass composites. JOURNAL OF MATERIALS SCIENCE 31, 6229–6240 (1996). https://doi.org/10.1007/BF00354443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354443

Keywords

Navigation