Marine Biology

, Volume 20, Issue 4, pp 319–346

Morphological patterns in high-intertidal gastropods: Adaptive strategies and their limitations

  • G. J. Vermeij
Article

Abstract

An analysis of shell form in several families of high-intertidal herbivorous gastropods has revealed the existence of morphological gradients. Among tropical littorinids, relative spire height and degree of development of external shell sculpture generally increase interspecifically, and often intraspecifically, from low to high shore levels. This gradient is also evident from temperate to tropical latitudes, and may be modified or overridden by exposure to wave action and other factors. Among acmaeid, patellid, and siphonariid limpets, there is a well-marked interspecific increase in relative shell height with increasing shore level, but latitudinal trends in morphology cannot at present be distinguished. Evidence from both tropical and temperate coasts indicates that limpets found in shaded places tend to have smoother shells than those often exposed to direct sunlight. In the Neritidae, relative shell globosity tends to increase interspecifically from low to high shore levels; most high-shore species have strong shell sculpture, with the base of the shell only slightly excavated. A decrease in the number of neritid species towards higher latitudes is accompanied by selective deletion of globose, strongly sculptured types living at high shore levels. Neritids and some limpets can employ evaporative cooling as a mechanism for temperature regulation. The morphological gradients in these groups reflect a relative increase in the volume of the extravisceral cavity (water reservoir) and a decrease in the area in contact with the substratum, as well as a relative decrease in the rate of water loss, in an upshore direction. Neritids are better adapted than limpets to high temperature and desiccation stresses because of their ability to regulate rate of evaporation and contact between soft parts and substratum. These differences are reflected in the complementary patterns of latitudinal diversity in the two groups. In Littorinidae, which attach to the substratum by a mucus film, the morphological gradients reflect a minimization of water loss and substratum contaet, and a maximization of reflective relative to absorptive surface area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baldwin, S.: Manometric measurement of respiratory activity in Acmaea digitalis and Acmaea scabra. Veliger 11 (Suppl.), 69–82 (1968).Google Scholar
  2. Bartlett, P. N. and D. M. Gates: The energy budget of a lizard on a tree trunk. Ecology 48, 315–322 (1967).Google Scholar
  3. Bennett, I. and E. C. Pope: Intertidal zonation of the exposed rocky shores of Victoria together with a rearrangement of the biogeographical provinces of temperate Australia. Aust. J. mar. Freshwat. Res. 4, 105–159 (1953).Google Scholar
  4. — Intertidal zonation of the exposed rocky shores of Tasmania and its relationship with the rest of Australia. Aust. J. mar. Freshwat. Res. 11, 182–219 (1960).Google Scholar
  5. Bock, C. E. and R. E. Johnson: The role of behavior in determining the intertidal zonation of Littorina planaxis Philippi, 1847, and Littorina scutulata Gould, 1849. Veliger 10, 42–54 (1967)Google Scholar
  6. Borland, C.: Ecological study of Benhamina obliquata (Sowerby), a basommatophorous pulmonate in Otago Harbour. Trans. R. Soc. N. Z. 78, 385–393 (1950).Google Scholar
  7. Brown, A. C.: Desiccation as a factor influencing the vertical distribution of some South African Gastropoda from intertidal rocky shores. Port. Acta biol. (Sér. B) 7, 11–23 (1960).Google Scholar
  8. Bullock, T. H.: Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30, 311–342 (1955).Google Scholar
  9. Crenshaw, M. A. and J. M. Neff: Decalcification at the mantleshell interface in molluscs. Am. Zool. 9, 881–885 (1969).Google Scholar
  10. Dahl, A. L.: Macroscopic algal foods of Littorina planaxis Philippi and Littorina scutulata Gould. Veliger 7, 139–143 (1964).Google Scholar
  11. Davies, P. S.: Physiological ecology of Patella. I. The effect of body size and temperature on metabolio rate. J. mar. biol. Ass. U.K. 46, 647–658 (1966).Google Scholar
  12. — Physiological ecology of Patella. II. Effect of environmental acclimation on the metabolio rate. J. mar. biol. Ass. U.K. 47, 61–74 (1967).Google Scholar
  13. — Physiological ecology of Patella. III. Desiccation effects. J. mar. biol. Ass. U.K. 49, 293–304 (1969).Google Scholar
  14. Eyre, J.: The South African intertidal zone and its relation to ocean currents. VII. An area in False Bay. Ann. Natal Mus. 9, 283–306 (1939).Google Scholar
  15. —, G. J. Broekhuysen and M. I. Crichton: The South African intertidal zone and its relation to ocean currents. VI. The East London distriot. Ann. Natal. Mus. 9, 83–111 (1938).Google Scholar
  16. — and T. A. Stephenson: The South African intertidal zone and its relation to ocean currents. V. A subtropical Indian Ocean shore. Ann. Natal Mus. 9, 121–146 (1938).Google Scholar
  17. Fischer, P. H.: Donnèes sur la rèsistance à l'exondation de quelques mollusques littoraux. J. Conch., Paris 104, 95–102 (1965).Google Scholar
  18. —: Comparaison de la rèsistance dans l'ean et dans l'air chez quelques mollusques littoraux. J. Conch., Paris 105, 140–142 (1966).Google Scholar
  19. Foster, M. S.: Microscopic algal food of Littorina planaxis Philippi and Littorina scw ulata Gould. Veliger 7, 149–152 (1964)Google Scholar
  20. Fritchman, H. K.: Acmaea paradigitalis sp. nov. Veliger 2, 53–57 (1960)Google Scholar
  21. Giesel, J. T.: Patterns influencing the growth and relative growth of Acmaea digitalis, a limpet. Ecology 50, 1086–1087 (1969).Google Scholar
  22. —: On the maintenance of a shell pattern and behavior polymorphism in Acmaea digitalis, a limpet. Evolution, Lancaster, Pa 24, 98–119 (1970).Google Scholar
  23. Graham, A. and V. Fretter: The life history of Patina pellucida (L.). J. mar. biol. Ass. U.K. 26, 590–601 (1947).Google Scholar
  24. Haas, F.: Untersuchungen über den Einfluß der Umgebung auf die Molluskenschale. Paläont. Z. 4, 120–127 (1922).Google Scholar
  25. Hamai, I.: Some notes on relative growth with special reference to the growth of limpets. Sci. Rep. Tôhoku Univ. (Ser. 4) 12, 71–95 (1937).Google Scholar
  26. —: An intertidal reconnaissance of the rocky shores of the Galapagos. Wasmann J. Biol. 27, 1–24 (1969b).Google Scholar
  27. Hubendick, B.: Phylogenie und Tiergeographie der Siphonariidae. Zool. Bidr. Upps. 24, 1–216 (1945).Google Scholar
  28. Hughes, R. N.: Ecological energetics of the keyhole limpet Fissurella barbadensis Gmelin. J. exp. mar. Biol. Ecol. 6, 167–178 (1971a).Google Scholar
  29. —: Ecological energetics of Nerita (Archaeogastropoda, Neritacea) populations on Barbados, West Indies. Mar. Biol. 11, 12–22 (1971b).Google Scholar
  30. Ino, T.: Shell variations of Cellana toreuma (Reeve) in relation to the environments. Bull. Jap. Soc. scient. Fish. 4, 31–36 (1935).Google Scholar
  31. James, B. L.: The characters and distribution of the subspecies and varieties of Littorina saxatilis (Olivi, 1792) in Britain. Cah. Biol. mar. 9, 145–165 (1968).Google Scholar
  32. Jobe, A.: A study of morphological variation in the limpet Acmaea pelta. Veliger 11 (Suppl.), 69–72 (1968).Google Scholar
  33. Keen, A. M.: Seashells of tropical West America, 1064 pp. Palo Alto, California: Stanford University Press 1971.Google Scholar
  34. Kenny, R.: Growth characteristics of Acmaea persona Eschscholtz. Veliger 11, 336–344 (1969).Google Scholar
  35. Knox, G. A.: Littoral ecology and biogeography of the southern oceans. Proc. R. Soc. (Ser. B) 152, 557–624 (1960).Google Scholar
  36. —: The biogeography and intertidal ecology of the Australasian coasts. Oceanogr. mar. Biol. A. Rev. 1, 341–404 (1963).Google Scholar
  37. Knudsen, J.: Geographical variation of Littorina obtusata (L.) in the North Atlantic. Vidensk. Meddr dansk. naturh. Foren. 111, 247–255 (1949).Google Scholar
  38. Kohn, A. J.: The ecology of Conus in Hawaii. Ecol. Monogr. 29, 47–90 (1959).Google Scholar
  39. Lewis, J. B.: The fauna of rocky shores of Barbados, West Indies. Can. J. Zool. 38, 391–435 (1960).Google Scholar
  40. —: Comparative respiration of some tropical intertidal gastropods. J. exp. mar. Biol. Ecol. 6, 101–108 (1971).Google Scholar
  41. Lewis, J. B.: Observations on a high-level population of limpets. J. Anim. Ecol. 23, 85–100 (1954).Google Scholar
  42. —: The ecology of rocky shores, 323 pp. London: English Universities Press 1964.Google Scholar
  43. MacPherson, J. H.: Preliminary revision of the families Patellidae and Acmaeidae in Australia. Proc. R. Soc. Vict. (N.S.) 67, 229–256 (1955).Google Scholar
  44. Mattox, N. T.: Effects of drying on certain marine snails from Puerto Rico. Ecology 30, 242–244 (1949).Google Scholar
  45. Micallef, H. and W. H. Bannister: Aerial and aquatic oxygen consumption of Monodonta turbinata (Mollusca: Gastropoda). J. Zool. London 151, 479–482 (1967).Google Scholar
  46. Morrison, J. P. E.: Notes on American Siphonaria. Rep. Am. malac. Un. Pacif. Div. 1963, 7–9 (1963).Google Scholar
  47. Morton, J. and M. Miller: The New Zealand seashore, 638 pp. London: Collins 1968.Google Scholar
  48. Nicol, D.: Lack of shell-attached pelecypods in Arctic and Antarctic waters. Nautilus 77, 92–93 (1964).Google Scholar
  49. —: Ecological implications of living pelecypods with calcarious spines. Nautilus 78, 109–116 (1965).Google Scholar
  50. —: Some characteristics of cold-water marine pelecypods. J. Paleont. 41, 1330–1340 (1967).Google Scholar
  51. North, W. J.: Size distribution, erosive activities, and gross metabolic efficiency of the marine intertidal snails, Littorina planaxis and L. scutulata. Biol. Bull. mar. biol. Lab., Woods Hole 106, 185–197 (1954).Google Scholar
  52. Olivier, S. R. y P. E. Penchaszadeh: Observaciones sobre la ecologia y biologia de Siphonaria (Pachysiphonaria) lessoni (Blainville, 1824) en el litoral rocoso de Mar del Plata (Buenos Aires). Cah. Biol. mar. 9, 469–491 (1968).Google Scholar
  53. Orton, J. H.: Observations on Patella vulgata. II. Rate of growth of shell. J. mar. biol. Ass. U.K. 15, 663–674 (1928).Google Scholar
  54. Paine, R. T.: Energy flow in a natural population of the herbivorous gastropod Tegula funebralis. Limnol. Oceanogr. 16, 86–98 (1971).Google Scholar
  55. Penrith, M.-L. and B. F. Kensley: The constitution of the intertidal fauna of rocky shores of South West Africa. I. Lüderitzbucht. Cimbebasia (A) 1 (9), 191–239 (1970a).Google Scholar
  56. —: The constitution of the intertidal fauna of rocky shores of South West Africa. II. Rocky Point. Cimbebasia (A) 1 (10), 245–268 (1970b).Google Scholar
  57. Porter, W. P. and D. M. Gates: Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).Google Scholar
  58. Balaparameswara Rao, M. and P. N. Ganapati: Ecological studies on a tropical limpet Cellana radiata. Mar. Biol. 9, 109–114 (1971).Google Scholar
  59. Regis, M. B.: Ecologie et aspects quantitatifs de la croissance de quelques monodontes et gibbules de la Mediterranée. Recl Trav. Stn mar. Endoume 45, 199–304 (1969).Google Scholar
  60. Rhoads, D. C. and J. W. Morse: Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia 4, 413–428 (1971).Google Scholar
  61. Ricketts, E.-F. and J. Calvin: Between Pacific tides, 614 pp. Palo Alto, California: Stanford University Press 1968.Google Scholar
  62. Rosewater, J.: Resistance to desiccation in dormancy by Tectarius muricatus. Nautilus 76, p. 111 (1963).Google Scholar
  63. —: The family Littorinidae in the Indo-Pacific. I. The subfamily Littorininae. Indo-Pacif. Mollusca. 2 (11), 417–506 (1970).Google Scholar
  64. Sandison, E. E.: The oxygen consumption of some intertidal gastropods in relation to zonation. J. Zool. London 149, 163–173 (1966).Google Scholar
  65. —: The respiratory response to temperature and temperature tolerance of some intertidal gastropods. J. exp.mar. Biol. Ecol. 1, 271–281 (1967).Google Scholar
  66. Scholander, P. F., W. Flagg, V. Walters and L. Irving: Climatic adaptation in Arctic and tropical poikilotherms. Physiol. Zoöl. 26, 67–92 (1953).Google Scholar
  67. Seed, R.: Factors influencing shell shape in the mussel Mytilus edulis. J. mar. biol. Ass. U.K. 48, 561–584 (1968).Google Scholar
  68. Segal, E.: Microgeographic variation as thermal acclimation in an intertidal mollusc. Biol. Bull. mar. biol. Lab., Woods Hole 111, 129–152 (1956).Google Scholar
  69. Shotwell, J. A.: The vertical zonation of Acmea, the limpet. Ecology 31, 647–649 (1950).Google Scholar
  70. Soule, M.: Trends in the insular radiation of a lizard. Am. Nat. 100, 47–64 (1966).Google Scholar
  71. Sourie, R.: Contribution à l'ètude ecologique des côtes rocheuse du Sènègal. Mém. Inst. fr. Afr. noire 38, 7–342 (1954).Google Scholar
  72. Southward, A. J.: Note on the temperature tolerances of some intertidal animals in relation to environmental temperatures and geographical distribution. J. mar. biol. Ass. U.K. 37, 49–66 (1958).Google Scholar
  73. Stephenson, T. A.: The constitution of the intertidal fauna and flora of South Africa. Part I. J. Linn. Soc. (Zool.) 40, 487–536 (1939).Google Scholar
  74. —: The constitution of the intertidal fauna and flora of South Africa. Part III. Ann. Natal Mus. 11, 207–324 (1948).Google Scholar
  75. — and A. Stephenson: Life between tide-marks in North America. II. Northern Florida and the Carolinas. J. Ecol. 40, 1–49 (1952).Google Scholar
  76. — and K. M. F. Bright: The South African intertidal zone and its relation to ocean currents. IV. The Port Elizabeth District. Ann. Natal Mus. 9, 1–20 (1938).Google Scholar
  77. — and J. H. Day: The South African intertidal zone and its relation to ocean currents. VIII. Lamberts Bay and the west coast. Ann. Natal Mus. 10, 345–380 (1940).Google Scholar
  78. Struhsaker, J. W.: Selection mechanisms associated with intraspecific shell variation in Littorina picta (Prosobranchia: Mesogastropoda). Evolution, Lancaster, Pa. 22, 459–480 (1968).Google Scholar
  79. Sutherland, J. P.: Dynamics of high and low populations of the limpet, Acmaea scabra (Gould). Ecol. Monogr. 40, 169–188 (1970).Google Scholar
  80. Test, A. R.: Ecology of California Acmaea. Ecology 26, 395–405 (1945).Google Scholar
  81. Vermeij, G. J.: The Nerita ascensionis species complex (Gastropoda: Prosobranchia) in the South Atlantic. Veliger 13, 135–138 (1970).Google Scholar
  82. —: Temperature relationships of some tropical Pacific intertidal gastropods. Mar. Biol. 10, 308–314 (1971a).Google Scholar
  83. —: Substratum relationships of some tropical Pacific intertidal gastropods. Mar. Biol. 10, 315–320 (1971b).Google Scholar
  84. —: Endemism and environment: some shore molluscs of the tropical Atlantic. Am. Nat. 106, 89–101 (1972a).Google Scholar
  85. —: Intraspecific shore-level size gradients in intertidal molluscs. Ecology 53, 693–700 (1972b).Google Scholar
  86. Vermeij, G. J.: West Indian molluscan communities in the rocky intertidal zone: a morphological approach. Thomas F. Goreau Memorial Volume, Miami: University of Miami Press (In press).Google Scholar
  87. Voss, N. A.: Studies on the pulmonate gastropod Siphonaria pectinata (Linnaeus) from the southeast coast of Florida. Bull. mar. Sci. Gulf Caribb. 9, 84–99 (1959).Google Scholar
  88. Ward, J.: Distribution and growth of the keyhole limpet Fissurella barbadensis Gmelin. Bull. mar. Sci. 17, 299–318 (1967).Google Scholar
  89. Wenz, W.: Die Entwicklungsgeschichte der Steinheimer Planorbiden und ihre Bedeutung für die Deszendenzlehre. Ber. senkenb. naturf. Ges. 22, 135–158 (1921).Google Scholar
  90. Whipple, J. A.: Systematics of the Hawaiian Littorina Ferussac. Veliger 7, 155–166 (1965).Google Scholar
  91. White, T. J.: Metabolic activity and glycogen stores of two distinct populations of Acmaea scabra. Veliger 11 (Suppl.), 102–104 (1968).Google Scholar
  92. Woodward, B. B.: On the mode of growth and the structure of the shell in Velates conoideus, Lmk., and other Neritidae. Proc. Zool. Soc. London 1892, 528–540 (1892).Google Scholar
  93. Yonge, C. M.: The pallial organs in the aspidobranch Gastropoda and their evolution throughout the Mollusca. Phil. Trans. R. Soc. (Ser. B) 232, 443–518 (1947).Google Scholar
  94. —: Ciliary currents in the mantle cavity of species of Acmaea. Veliger 4, 119–123 (1962).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • G. J. Vermeij
    • 1
  1. 1.Department of ZoologyUniversity of MarylandCollege ParkUSA

Personalised recommendations