Skip to main content
Log in

Numerical analysis of the deformation and solidification of a single droplet impinging onto a flat substrate

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An existing model has been modified to explore the deformation and solidification of a single droplet impinging on a substrate. The modification accounts for possible solid fraction of material at impact. Numerical results predict that the kinetic energy dominates the process at impinging velocities greater than about 100 m s−1. In addition, the thermal diffusivity of the solidifying material controls the process, but the temperature of the substrate relative to the melting temperature of the material must be considered when comparing materials. It is believed that droplets solidifying into thinner, wider discs would reduce porosity; therefore, dense materials accelerated to high speed would solidify into masses with the highest bulk density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a l :

Thermal diffusivity of the liquid (cm2 s−1)

a s :

Thermal diffusivity of the solid (cm2 s−1)

b :

Thickness of the molten metal (cm)

c l :

Specific heat of the liquid (J g−1 K−1)

c s :

Specific heat of the solid (J g−1 K−1)

D :

Diameter of the droplet (D = 2R 0) (cm)

E k :

Kinetic energy (J)

E p :

Potential energy (J)

L f :

Work of the friction forces (W)

Δh :

Enthalpy of fusion (J g−1)

k l :

Thermal conductivity of the liquid (W cm−1K−1)

k s :

Thermal conductivity of the solid (W cm−1 K−1)

R :

Radius of the solidified disc (cm)

t * :

Real time (s)

τ * :

Real time from solidification (s)

T l :

Temperature of the molten metal (K)

T m :

Melting temperature (K)

T s :

Temperature of the substrate (K)

V s :

Volume of the solid (cm3)

y :

Thickness of the solidified layer (cm)

y o :

Thickness of the solidified layer at impact (cm)

μ:

Viscosity of the molten metal (mN s m−2)

χ :

Mass fraction of the solid at impact

ϱl :

Density of the molten metal (g cm−3)

ϱs :

Density of the solid metal (g cm−3)

σ:

Surface tension of the molten metal (mN m−1)

ω:

Velocity of the liquid droplet at impact (cm s−1)

t :

Dimensionless time

τ:

Dimensionless time from solidification

T o :

Dimensionless temperature of the substrate

T p :

Dimensionless temperature of the droplet

φ:

Dimensionless thickness

ξ:

Dimensionless radius

Pe:

Peclet number

Re:

Reynolds number

We:

Weber number

κ:

Constant (Equation 13)

ɛ:

Constant (=0.5)

U :

Freezing constant (Equation 1)

References

  1. D. Apelian, M. Paliwal, R. W. Smith and W. F. Schilling, Int. Metals Rev. 28 (1983) 271.

    CAS  Google Scholar 

  2. D. Wei, B. Farouk and D. Apelian, in “Plasma Processing and Synthesis of Materials”, edited by D. Apelian and J. Szekely (Materials Research Society, Pittsburgh, PA, 1987) p. 77.

    Google Scholar 

  3. W. Lucas, “TIG and Plasma Welding — Process Techniques, Recommended Practices and Applications” (Abington, Cambridge, UK, 1990).

  4. K. Weber, Arc Engng, Stainless Steel 25 (1989) 12.

    Google Scholar 

  5. Flame Coatings PIY Ltd, “Superiors/HVOF Coatings — Higher Particle Velocities Produce Better Thermal Spray Coatings”, Internal Report, Sydney, Australia.

  6. E. J. Lavernia, J. A. Ayers and T. S. Srivatsan, Int. Mater. Rev. 37 (1992) 1.

    CAS  Google Scholar 

  7. M. Gupta, F. A. Mohamed and E. J. Lavernia, Met. Trans. 23A (1992) 831.

    CAS  Google Scholar 

  8. X. Liang, J. C. Earthman and E. J. Lavernia, Acta Metall. Mater., in press.

  9. X. Zeng, H. Liu, M. Chu and E. J. Lavernia, Met. Trans. A, 23A (1992) 3394.

    CAS  Google Scholar 

  10. R. McPherson, Surf. Coat. Technol. 1 (1989) 173.

    Google Scholar 

  11. E. Lugscheider, and T. Weber, Fresenius' Z. Anal. Chem. 333, (4–5) I (1989) 293.

    CAS  Google Scholar 

  12. P. Mathur, S. Annavarapu, D. Apelian and A. Lawley, Mater. Sci. Engng A142 (1991) 261.

    CAS  Google Scholar 

  13. R. W. Smith and D. Apelian, Pure Appl. Chem. 62 (1990) 1825.

    CAS  Google Scholar 

  14. H. D. Steffens, B. Wielage and J. Drozak, Mater. Wiss. Werkst. Tech. 21 (1990) 185 (in German).

    CAS  Google Scholar 

  15. E. J. Lavernia, Int. J. Rapid Solid. 4 (1988) 89.

    CAS  Google Scholar 

  16. E. Gutierres-Miravete, G. Trapaga and J. Szekely, in “Casting of Near Net Shape Products”, edited by Y. Sahai (The Metallurgical Society, Hawaii 1988).

    Google Scholar 

  17. H. Liu, PhD thesis, University of Bremen, FRG (1990) (in German).

    Google Scholar 

  18. J. Madejski, Int. J. Heat Mass Transfer 19 (1976) 1009.

    Google Scholar 

  19. R. D. Phelke, A. Jeyarajan and H. Wada “Summary of Thermal Properties for Casting Alloys and Mold Materials” (University of Michigan, Michigan 1982).

    Google Scholar 

  20. E. A. Brandes, “Smithell's Metals Reference Book”, 6th Edn (Butterworth, New York, 1983).

    Google Scholar 

  21. R. C. Weast, “CRC Handbook of Chemistry and Physics”, 60th Edn (CRC Press, Boca Raton, Florida 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchi, C.S., Liu, H., Lavernia, E.J. et al. Numerical analysis of the deformation and solidification of a single droplet impinging onto a flat substrate. JOURNAL OF MATERIALS SCIENCE 28, 3313–3321 (1993). https://doi.org/10.1007/BF00354253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354253

Keywords

Navigation