Skip to main content
Log in

Gas exchange morphometry of the lungs of the tokay, Gekko gecko L. (Reptilia: Squamata: Gekkonidae)

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The tokay lizard (Gekko gecko) possesses singlechambered lungs, eacch of which is a mirror image of the other reflected in the midsagittal body plane. When standard techniques are employed for instilling 2% phosphate-buffered glutaraldehyde to three-quarters of the total lung capacity, neither the left nor the right lung is consistently larger. Internally, the lungs are characterized by a row of 11 dorsomedial niches and by honeycomb-like (faveolar) gas exchange tissue, which is deeper cranially than caudally. Based upon mean values for all experimental animals, a 100-g tokay would have an overall anatomical diffusion factor (respiratory surface area divided by the appropriate τht) of 203 cm2·μm-1·100 g-1, 61% of which is located on the interfaveolar septa. Of the total septal anatomical diffusion factor, 94% is evenly divided between the anterior and middle thirds of the lung, with 6% in the posterior third. The 39% of the anatomical diffusion factor located on the inner lung wall is predominantly (76%) in the middle and posterior lung thirds, with only 24% in the anterior region. These tendencies toward heterogeneous distribution of anatomical diffusion factor were most pronounced in a 55 g juvenile animal. In this animal the total anatomical diffusion faxtor/body mass was 3.6 times that of a 197 g adult. This difference was attributable to a greater body massspecific lung volume and respiratory surface area as well as to a greater surface-to-volume ratio in the parenchyma and to a thinner air-blood diffusion barrier in the juvenile animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADF:

anatomical diffusion factor

%AR:

percentage of potential respiratory surface area which makes up SAR

DtO2 :

diffusing capacity for air-blood tissue barrier

IUR:

isotropic uniform randomly distributed

bm:

body mass

%P :

percentage of lung volume devoted to parenchyma

S A :

potential respiratory surface area (S L minus the surface area of the trabeculae)

S ANR :

non-respiratory surface area

S AR :

respiratory surface area

S L :

total internal surface area of the lung

S v :

surface area-to-volume ratio in parenchyma

τht :

harmonic mean thickness of the air-blood tissue barrier

V L :

morphometrically determined volume of both lungs, fixed at 0.75· V Lm

V Lm :

maximal lung volume, similar to total lung capacity in mammals

V Lr :

resting lung volume, similar to functional residual capacity in mammals

VP:

morphometrically determined volume of parenchyma of both lungs, fixed at three-quarters of VLm

References

  • Baddeley AJ, Gundersen HJG, Cruz-Oriye LM (1986) Estimation of surface area from vertical sections. J Microsc 142:259–276

    Google Scholar 

  • Büsing MG (1990) Untersuchungen zur Morphologie der Trachea und der Lungen in der Systematik der Gekkonidae (Reptilia). Diplomarbeit, Universität Oldenburg, Germany

  • Duncker H-R (1978) Funktionsmorphologie des Atemapparates und Coelomgliederung bei Reptilien, Vögeln und Säugern. Verh Dtsch Zool Ges 1987:99–132

    Google Scholar 

  • Gatz RN, Crawford EC Jr, Piiper J (1975) Kinetics of inert gas equilibration in exclusively skin-breathing salamanders, Desmognathus fuscus. Respir Physiol 24:15–29

    Google Scholar 

  • Glass ML, Johansen K (1979) Periodic breathing in the crocodile Crocodylus niloticus: consequences for the gas exchange ratio and control of breathing. J Exp Zool 208:379–326

    Google Scholar 

  • Klemm RD, Gatz RN, Westfall JA, Fedde MR (1979) Microanatomy of the lung parenchyma of a tegu lizard Tupinambis nigropunctatus. J Morphol 161:257–280

    Google Scholar 

  • Magnussen H, Perry SF, Willmer H, Piiper J (1974) Transpleural diffusion of inert gases in isolated lung lobes. Respir Physiol 20:1–15

    Google Scholar 

  • Mahendra BC (1947) Contributions to the bionomics, anatomy, reproduction and development of the Indian house-gecko, Hemidactylus flaviviridis Rüppel. Part IV. The respiratory and vocal organs. Proc Indian Acda Sci 2:29–42

    Google Scholar 

  • Merz WA (1967) Die Streckenmessung an gerichteten Strukturen im Mikroskop und ihre Anwendung zur Bestimmung von Oberflächen-Volumen-Relationen im Knochengewebe. Mikroskopie 22:132–142

    Google Scholar 

  • Michel RP, Cruz-Orive LM (1989) Application of the Calavieri principle and vertical sections method to lung: estimation of volume and pleural surface area. J Microsc 150:117–136

    Google Scholar 

  • Milsom WK (1984) The interrelationship between pulmonary mechanics and spontaneous breathing in the tokay lizard, Gekko gecko. J Exp Biol 113:203–214

    Google Scholar 

  • Milsom WK, Vitalis TZ (1984) Pulmonary mechanics and the work of breathing in the tokay lizard, Gekko gecko. J Exp Biol 113:203–214

    Google Scholar 

  • Nielsen B (1962) On the regulation of respiration in reptiles. II. The effect of hypoxia with and without moderate hypercapnia on the respiration and metabolism of lizards. J Exp Biol 39:107–117

    Google Scholar 

  • Perry SF (1978) Quantitative anatomy of the lungs of the red-eared turtle, Pseudemys scripta elegans. Respir Physiol 35:245–262

    Google Scholar 

  • Perry SF (1981a) Improved method for demonstration of cut surfaces of tissue in paraffin blocks. Mikroskopie (Wien) 38:13–15

    Google Scholar 

  • Perry SF (1981b) Morphometric analysis of pulmonary structure: methods for evaluation and comparison of unicameral and multicameral lungs. Mikroskopie (Wien) 38:278–29

    Google Scholar 

  • Perry SF (1983) Reptilian lungs: quantitative anatomy and evolution. Adv Anat Embryol Cell Biol 79:1–81

    Google Scholar 

  • Perry SF (1990) Gas exchange strategy in the Nile crocodile: a morphometric study. J Comp Physiol B 159:761–769

    Google Scholar 

  • Perry SF, Duncker H-R (1978) Lung architecture, volume and static mechanics in five species of lizards. Respir Physiol 34:61–81

    Google Scholar 

  • Perry SF, Duncker H-R (1980) Interrelationship between static mechanical factors and anatomical structure in lung evolution. J Comp Physiol 138:321–334

    Google Scholar 

  • Perry SF, Bauer AM, Russell AP, Alston JT, Maloney JE (1989a) The lungs of the gecko Rhacodactylus leachianus (Reptilia: Gekkonidae): a correlative gross anatomical light and electron microscopic study. J Morphol 199: 23–40

    Google Scholar 

  • Perry SF, Aumann U, Maloney JE (1989b) Intrinsic lung musculature and associated ganglion cells in a Teiid lizard, Tupinambis nigropunctatus Spix. Herpetologica 45:217–227

    Google Scholar 

  • Scherle WF (1970) A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26:57–60

    Google Scholar 

  • Spragg RG, Ackermann R, White FN (1980) Distribution of ventilation in the turtle, Pseudemys scripta. Respir Physiol 42:73–86

    Google Scholar 

  • Weibel ER (1970/1971) Morphometric estimation of pulmonary diffusion capacity. II Model and method. Respir Physiol 11:54–75

    Google Scholar 

  • Weibel ER (1984) The pathway for oxygen. Harvard, Cambridge, MA

    Google Scholar 

  • Weibel ER, Knight BW (1964) A morphometric study on the thickness of the pulmonary air-blood barrier. J Cell Biol 21:367–384

    Google Scholar 

  • Weibel, ER, Taylor CR, O'Neil JJ, Leith DE, Gehr P, Hoppeler H, Langman V, Baudinette RV (1983) Maximal oxygen consumption and pulmonary diffusing capacity: direct comparison of physiologic and morphometric measurements in canids. Respir Physiol 54:173–188

    Google Scholar 

  • Welsch U, Müller M (1980) Feinstrukturelle Beobachtungen am Alveolarepithel von Reptilien unterschiedlicher Lebensweise. Z Mikrosk Anat Forsch 94:479–503

    Google Scholar 

  • Werner F (1912) Beitrage zur Anatomie einiger seltener Reptilien, mit besonderer Berücksichtigung der Atmungsorgane. Arb Zool Inst Univ Wien 19:373–424

    Google Scholar 

  • Wiedersheim R (1906) Lenrbuch der vergleichenden Anatomie der Wirbeltiere. Gustav Fischer, Jena

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, S.F., Hein, J. & van Dieken, E. Gas exchange morphometry of the lungs of the tokay, Gekko gecko L. (Reptilia: Squamata: Gekkonidae). J Comp Physiol B 164, 206–214 (1994). https://doi.org/10.1007/BF00354081

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354081

Key words

Navigation