Skip to main content
Log in

Crack growth in elastically damaged materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Brittle, polycrystalline and polyphase materials such as ceramics and fibre-reinforced brittle composites contain residual thermo-mechanical stresses from manufacturing. These stresses are concentrated at sites of microstructural inhomogeneities such as grain and phase boundaries. The nucleation and growth of microcracks can minimize the local micro-strain energy density; thus, the local, residual stresses can act as nuclei for microcracks. The density of nuclei, statistically distributed within the material, depends on grain size, i.e. the distance between nuclei, with defined values of micro-strain energy density, is material specific. Stress-induced microcracking can act as an attractor for elastic damage at the local scale to produce a process zone that acts as a sink of strain-energy release on a larger scale, for example, the process zone at a crack front. It can be shown that the stress-rate dependent growth of local damage follows a power law which quantifies strengthening and softening during slow crack growth, prior to catastrophic crack extension. The damage-induced zone, produced by the release of strain energy on the local scale, can shield the macrocrack and grow to a critical value at the failure load. The influence of the microstructure on damage will be quantified and related to sub-critical and critical crack extension in brittle materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Griffith, Phil. Trans. R. Soc. (Lond.) A221 (1920) 163.

    Google Scholar 

  2. H. Neuber, Z. Konstruktion 20 (1968) 245.

    Google Scholar 

  3. G. R. Irwin, in “Handbuch der Phisik”, Vol. 6, edited by S. Flugge (Springer, Berlin, 1958) pp. 551–60.

    Google Scholar 

  4. G. R. Irwin and P. C. Paris, in“Fracture”, Vol. 2, edited by H. Liebowitz (Academic, NY, 1971).

    Google Scholar 

  5. R. G. Hoagland, G. T. Hahn and A. R. Rosenfield, Roch. Mech. 5 (1973) 77.

    Article  Google Scholar 

  6. F. E. Buresch, Sci. Ceram. 7 (1973) 383.

    Google Scholar 

  7. Idem, ibid. F. E. Buresch, Sci. Ceram. 7 (1973) 475.

    Google Scholar 

  8. idem, in “8th Arbeitskr. Bruchvorgange” (DVM, 1976).

  9. Idem F. E. Buresch in ASTM STP 678, edited by S. W. Freiman (American Society for Testing and Materials, Philadelphia, PA, 1979) pp. 151–65.

    Google Scholar 

  10. G. C. Sih, Theor. Appli. Fract. Mech. 4 (1985) 157.

    Article  Google Scholar 

  11. F. Osterstock et al., Proj. MAE-0072-C, Final Rep., Lermat Cean, ESK Kempten, ICA Stuttgart, June 1991.

  12. F. E. Buresch, Adv. Ceram. 12 (1984) 306.

    CAS  Google Scholar 

  13. Idem F. E. Buresch, Mater. Sci. Eng. 71 (1985) 187.

    Article  CAS  Google Scholar 

  14. Idem F. E. Buresch, Mater. Pr. 29 (1987) 261.

    CAS  Google Scholar 

  15. A. G. Atkins and Y. W. Mai, “Elastic and Plastic Fracture” (Ellis Horwood, Chichester, 1985) p. 268.

    Google Scholar 

  16. F. E. Buresch, “Lecture Notes in Engineering”, No. 59, edited by K. P. Herrmann and Z. S. Olesiak (Springer, Berlin, 1990) pp. 227–38.

    Google Scholar 

  17. Idem. F. E. Buresch, Fort. Ber. DKG, Bd. 6. Heft l (1991) 51.

    Google Scholar 

  18. F. E. Buresch, E. Babilon and G. Kleist, in “ICRS2” edited by C. Beck, S. Denis and A. Simon (Elsevier, London, 1989) p. 1003.

    Google Scholar 

  19. E. Babilon, G. Kleist, F. E. Buresch and H. Nickel, Sci. Ceram. 14 (1988) 665.

    CAS  Google Scholar 

  20. Idem, in “ECF7” (1989) p. 552.

  21. E. Babilon, K.K.O. BäR, G. Kleist and H. Nickel, in “Euram Ceramics”, Vol. 3 (Elsevier, 1989) p. 247.

  22. E. Babilon, personal communication.

  23. C. Sklarczyk, J. Eur. Ceram. Soc. 9 (1992) 427.

    Article  CAS  Google Scholar 

  24. S. Pangraz, E. Babilon and A. Arnold, Acoust. Imag. 19 (1992) 691.

    Article  CAS  Google Scholar 

  25. K. Bär, Dissertation, Aachen (1990).

  26. K. Bär, R. Mergen and F. Osterstock, Eur. Ceram. 3 (1989) 190.

    Google Scholar 

  27. H. Frei and G. Grathwohl, Inst. Werkst. Uni. Karlsruhe, personal communication (1991).

  28. H. Frei, G. Plappert and G. Grathwohl, in “Euram Ceram”, Vol. 3 (Elsevier, London, 1989) p. 115.

    Google Scholar 

  29. R. Davidge, J. R. Mclaren, I. Tichell, Frat. Mech. Cer. 5 (1983) 594.

    Google Scholar 

  30. U. F. Kocks, Acta. Metall. 14 (1966) 1629.

    Article  CAS  Google Scholar 

  31. J. W. Hutchinson, Acta Metall. 35 (1987) 1605.

    Article  CAS  Google Scholar 

  32. O. Buresch, F. E. Buresch, W. Hönle and H. G. Von Schnering, Microchem. Acta (Wien) I (1987) 219.

    Article  Google Scholar 

  33. F. E. Buresch, K. Frye and Th. Müller, Fract. Mech. Ceram. 5 (1983) 591.

    Article  Google Scholar 

  34. F. E. Buresch and H. Nickel (DVM, 1984) pp. 123–34.

  35. L. Pintschovius, E. Gering, B. Sscholes, E. Macherauch, 13.01. 01P05A, KFK (1988)

  36. H. M. Bui and A. Ehrlacher, Adv. Fract. Res. 2 ICF 5 (1981) 533.

    Google Scholar 

  37. T. Mishima, Y. Nanayama, Y. Hirose and K. Tanaka, Adv. X-ray Anal. 30 (1987) 545.

    CAS  Google Scholar 

  38. I. Buresch and F. E. Buresch, in “Third ICRS”, Frankfurt (1993) in press.

  39. F. E. Buresch, Fortschr. Ber. DKG Bd 7 (1992) 140.

    Google Scholar 

  40. Idem., in “Proc. Third Int. Conf. Compu. Plasticity”, edited by D. R. Owen, E. Onate, E. Hinton (1992) p. 1707.

  41. M. Gomina, D. Themines, J. L. Chermant and F. Osterstock, Int. J. Fract. 34 (1987) 219.

    Article  CAS  Google Scholar 

  42. M. Gomina and J. L. Chermant, Fortschr. Ber. DKG Bd. 3 (1988) 17.

    Google Scholar 

  43. M. Gomina and M. H. Rouillon, ibid. 5(1) (1990) 283.

    Google Scholar 

  44. F. Osterstock and R. Moussa, ibid. 3 (1988) 71.

    Google Scholar 

  45. C. T. Bodur, Dissertation, Stuttgart (1989).

  46. C. T. Bodur and K. Kromp, Fortschr. Ber. DKG Bd 3(3) (1988) 109.

    Google Scholar 

  47. K. Schulte, in “18th Jahrestagung AVK”, Freudenstadt, 6–7 October 1982.

  48. J. R. Michener and S. J. Burns, Int. J. Fract. 23 (1983) R45.

    Google Scholar 

  49. M. Rühle and A. G. Evans, Mater. Sci. 13 (1989) 85.

    Google Scholar 

  50. F. E. Buresch, in “Reliability of Engineering Materials”, edited by A. L. Smith (Butterworth, London, 1984) pp. 55–74.

    Chapter  Google Scholar 

  51. M. Rühle, N. Claussen and A. H. Heuer, J. Am. Ceram. Soc. 69 (1986) 195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A sudden heart attack ended the life and work of my father, on Friday 27 August 1993. This paper was found almost finished on his computer. The last corrections were done just a few hours before his death. It is dedicated as a farewell paper and legacy to all friends and colleagues, in his memory. Dr Isabell Buresch. Wieland Werke AG, Ulm, Germany 27 September 1993

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buresch, F.E. Crack growth in elastically damaged materials. JOURNAL OF MATERIALS SCIENCE 29, 6341–6353 (1994). https://doi.org/10.1007/BF00353992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353992

Keywords

Navigation