Skip to main content
Log in

Effect of notching speed on dynamic fatigue behaviour of polyethylene terephthalate polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of notching speed on the fatigue behaviour of crystalline and amorphous polyethylene terephthalate (PET) was investigated. A clear precrack adjacent to the notch tip was found after each crystalline sample was notched, and the precrack length increased when the samples were notched at higher speeds. The failure time, t f, decreased significantly for samples with longer precrack lengths, and the decrease in t f due to faster notching speeds was significantly lower for samples of high average molecule weight and calculated tie-molecule density. In contrast, a heart-shaped damaged structure surrounding the notch tip was observed after each amorphous sample was notched, and the size of the damaged zone, adjacent to the notch tip, increased significantly with the notching speed. Furthermore, the time to failure of each amorphous sample increased significantly as the notching speed increased. In fact, most of the increase in t f is due to an increase in the initiation period, t i. This significant increase in t i is attributed to the larger damaged zone caused by higher notching speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. HERTZBERG and J. A. MANSON, in “Fatigue of engineering plastics” (Academic Press, New York 1980).

    Google Scholar 

  2. J. A. MANSON and R. W. HERTZBERG, Ency. Polym. Sci. Engng. 7 (1986) 378.

    Google Scholar 

  3. S. K. BHATTACHARYA and N. BROWN, J. Mater. Sci. 19 (1984) 2519.

    Article  CAS  Google Scholar 

  4. S. K. BHATTACHARYA and N. BROWN, J. Mater. Sci. 20 (1985) 2767.

    Article  CAS  Google Scholar 

  5. X. LU and N. BROWN, J. Mater. Sci. 21 (1986) 2423.

    Article  CAS  Google Scholar 

  6. X. LU and N. BROWN, J. Mater. Sci. 21 (1986) 4081.

    Article  CAS  Google Scholar 

  7. X. LU, X. WANG and N. BROWN, J. Mater. Sci. 23 (1988) 643.

    Article  CAS  Google Scholar 

  8. N. BROWN and X. WANG, Polymer 29 (1988) 463.

    Article  CAS  Google Scholar 

  9. Y. HUANG and N. BROWN, J. Mater. Sci. 23 (1988) 3648.

    Article  CAS  Google Scholar 

  10. X. LU, R. QIAN and N. BROWN, J. Mater. Sci 26 (1991) 881.

    Article  CAS  Google Scholar 

  11. Plane-Strain Fracture Toughness of Metallic Materials, ASTM E399-83, (American Society for Testing and Materials, Philadelphia 1989).

  12. Measurement of Fatigue Crack Growth Rates, ASTM E647-88a, (American Society for Testing and Materials, Philadelphia, 1989).

  13. K. WEISSKOPF, J. Polym. Sci., A 26 (1988) 1919.

    Article  CAS  Google Scholar 

  14. P. E. SLADE, T. A. ORFINO, in “Analytical calorimetry”, edited by R. S. PORTER, J. F. JOHNSON, (Plenum Press, New York, 1968) p. 63.

    Chapter  Google Scholar 

  15. J. D. HOFFMAN, G. T. DAVIS and J. I. LAURITZEN, “Treatise on solid state chemistry”, Vol. 3, edited by N. B. HANNYAY (Plenum Press, New York, 1975).

    Google Scholar 

  16. R. de P. DAUBENY, C. W. BUNN, C. J. BROWN, Proc. Roy. Soc. A 226 (1954) 531.

    Article  CAS  Google Scholar 

  17. G. C. ALFONSO, E. PEDEMONTE and L. PONZETTI, Polymer 20 (1979) 104.

    Article  CAS  Google Scholar 

  18. H. D. KEITH, F. J. PADDEN Jr, and R. G. VADIMSKY, J. Polym. Sci., A-2 4 (1966) 267.

    Article  CAS  Google Scholar 

  19. H. D. KEITH, F. J. PADDEN Jr, and R. G. VADIMSKY, J. Appl. Phys. 37 (1966) 4027.

    Article  CAS  Google Scholar 

  20. H. D. KEITH, F. J. PADDEN Jr, and R. G. VADIMSKY, J. Appl. Phys. 42 (1971) 4585.

    Article  CAS  Google Scholar 

  21. R. G. VADIMSKY, H. D. KEITH, and F. J. PADDEN, J. Polym. Sci., A-2 7 (1969) 1367.

    Article  CAS  Google Scholar 

  22. H. A. DAVIS, J. Polym. Sci. A-2 4 (1966) 1009.

    Article  CAS  Google Scholar 

  23. S. NAGOU and K. AZUMA, J. Macromol. Sci., Phys. Ed. 16 (1979) 435.

    Article  Google Scholar 

  24. E. S. CLARK, S. P. E. J. 23 (1967) 46.

    CAS  Google Scholar 

  25. H. D. KEITH, F. J. PADDEN, Jr., and R. G. VADIMSKY, J. Polym. Sci., Polym. Phys. Ed. 18 (1980) 2307.

    Article  CAS  Google Scholar 

  26. E. W. FISCHER, K. HAHN, J. KUGLER, U. STRUTH, and R. BOM, J. Polym. Sci., Polym. Phys. Ed. 22 (1984) 1491.

    Article  CAS  Google Scholar 

  27. V. V. ZHIZHENKOV and E. A. EGOROV, J. Polym. Sci., Polym. Phys. Ed. 22 (1984) 117.

    Article  CAS  Google Scholar 

  28. N. BROWN and I. M. WARD, J. Mater. Sci. 18 (1983) 1413.

    Google Scholar 

  29. J. T. YEH and J. RUNT, J. Polym. Sci., Polym. Phys. Ed., 29 (1991) 371.

    Article  CAS  Google Scholar 

  30. W. W. GRAESSLEY, Adv. Polym. Sci. 16 (1974) 55.

    Google Scholar 

  31. J. T. YEH and J. RUNT, J. Mater. Sci. 24 (1989) 1421.

    Article  Google Scholar 

  32. Y. L. HUANG and N. BROWN, J. Mater. Sci. 23 (1991) 3648.

    Article  Google Scholar 

  33. Y. L. KEITH, F. J. PADDEN, Jr., and R. G. VADIMSKY, J. Appl. Phys. 42 (1971) 4585.

    Article  CAS  Google Scholar 

  34. S. WELLINGHOFF and E. BAER, J. Macromol. Sci. Phys. B 11 (1975) 367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, J.T., Lin, Y.T. Effect of notching speed on dynamic fatigue behaviour of polyethylene terephthalate polymers. JOURNAL OF MATERIALS SCIENCE 28, 3900–3910 (1993). https://doi.org/10.1007/BF00353198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353198

Keywords

Navigation