Skip to main content
Log in

Electrical transport in light rare-earth molybdates

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rare-earth molybdates of the type R2(MoO4)3 with R=La, Ce, Pr, Nd, Sm and Eu were prepared and characterized, and the electrical conductivity, σ and Seebeck coefficient, S in the temperature range 450–1200 K were measured. These molybdates are concluded to be insulating solids with a band gap which increases slowly going down the series from 2.30 eV for La molybdate to 3.20 eV for Eu molybdate. The plots of log σ and S versus T −1 show, in general, three linear regions with two break temperatures T 1 and T 2 occurring due to a change in the conduction mechanism. At higher temperatures the intrinsic conduction in these solids occurs via a band mechanism. The O2− ∶2p and Mo6+ ∶4d orbitals form the valence and conduction bands, respectively. These bands are the main support of conduction in La, Sm and Eu molybdates; however, for Ce, Pr and Nd molybdates 4fn levels fall within the band gap and become very effective in electrical conduction. The main charge-carrying entities seem to be electrons in Ce, Pr and Nd molybdates and holes in La, Sm and Eu molybdates. On the basis of mobility calculations of charge carriers it is concluded that the charge carriers in these bands become polarons which are, in fact, the charge carrying entities. At lower temperatures electrical conduction is mainly extrinsic. Cerium molybdate shows a semiconductor-semimetal transition around 940 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. BORCHARDT and P. E. BIERSTEDT, J. Appl. Phys. 38 (1967) 2057.

    Article  CAS  Google Scholar 

  2. L. E. CROSS, A. FOUSKOVA and S. E. CUMMINS, Phys. Rev. Lett. 21 (1968) 812.

    Article  CAS  Google Scholar 

  3. P. B. JAMIESON, S. C. ABRAHAMS and J. L. BERNSTEIN, J. Chem. Phys. 50 (1969) 86.

    Article  CAS  Google Scholar 

  4. K. AIZU, A. KUMADA, H. YOMOTO and S. ASHIDA, J. Phys. Soc. Jpn. 27 (1969) 511.

    Article  CAS  Google Scholar 

  5. R. E. NEWNHAM, H. A. MCKINSTRY, C. W. CREGG and W. R. STITT, Phys. Status Solidi 32 (1969) 49.

    Article  Google Scholar 

  6. K. NASSAU, J. W. SHIRVER and E. T. KEVE, J. Solid State Chem. 3 (1971) 411.

    Article  CAS  Google Scholar 

  7. R. C. MILLER, W. A. NORDLAND and K. NASSAU, Ferroelectrics 2 (1971) 97.

    Article  CAS  Google Scholar 

  8. L. H. BRIXNER, P. E. BIERSTEDT, A. W. SLEIGHT and M. S. LICIS, Mater. Res. Bull. 6 (1971) 545.

    Article  CAS  Google Scholar 

  9. L. H. BRIXNER, A. W. SLEIGHT and M. S. LICIS, J. Solid State Chem. 5 (1972) 247.

    Article  CAS  Google Scholar 

  10. L. H. BRIXNER, J. R. BARKLEY and W. JEITSCHKO, ‘The hand book on the physics and chemistry of rare-earths’ Vol. 3, Non-metallic Compounds, edited by K. A. GSCHNEIDNER Jr and L. EYRING (North Holland, Amsterdam, 1979), p. 610.

    Google Scholar 

  11. H. B. LAL, B. K. VERMA and N. DAR, India J. Cryogenics 2 (1977) 199.

    Google Scholar 

  12. H. B. LAL, V. PRATAP and A. KUMAR, Pramana 4 (1978) 409.

    Article  Google Scholar 

  13. B. K. VERMA, V. PRATAP and H. B. LAL, Indian J. Pure Appl. Phys. 18 (1980) 150.

    CAS  Google Scholar 

  14. H. B. LAL, N. DAR and A. KUMAR, J. Phys. C 7 (1974) 4335.

    Article  CAS  Google Scholar 

  15. Idem., ibid. 8 (1975) 2745.

    CAS  Google Scholar 

  16. H. B. LAL and N. DAR, Physica B 84 (1976) 254.

    Article  Google Scholar 

  17. H. B. LAL and N. DAR, Mater. Res. Bull. 14 (1979) 1263.

    Article  Google Scholar 

  18. H. B. LAL, J. Mag. Mag. Mater. 23 (1981) 41.

    Article  CAS  Google Scholar 

  19. H. B. LAL and M. SINGH, J. Phys. C 15 (1982) 291.

    Article  CAS  Google Scholar 

  20. H. B. LAL, B. K. VERMA and V. R. YADAV, J. Mater. Sci. 17 (1982) 3317.

    Article  CAS  Google Scholar 

  21. V. R. YADAVA, B. K. VERMA, A. K. TRIPATHI and H. B. LAL, Z. Naturforsch 37a (1982) 1083.

    CAS  Google Scholar 

  22. H. B. LAL and S. METHFESSEL, J. Mag. Mag. Mater. 23 (1981) 283.

    Article  CAS  Google Scholar 

  23. H. B. LAL, J. Mag. Mag. Mater. 30 (1982) 192.

    Article  CAS  Google Scholar 

  24. A. K. TRIPATHI and H. B. LAL, Mater. Res. Bull. 12 (1980) 233.

    Article  Google Scholar 

  25. A. K. TRIPATHI and H. B. LAL, J. Mater. Sci. 17 (1982) 1595.

    Article  CAS  Google Scholar 

  26. K. GAUR, A. K. TRIPATHI and H. B. LAL, J. Mater. Sci. Lett. 2 (1983) 161.

    Article  CAS  Google Scholar 

  27. Idem., ibid. 2 (1983) 371.

    Article  CAS  Google Scholar 

  28. K. GAUR and H. B. LAL, J. Mater. Sci. Lett. 2 (1983) 744.

    Article  CAS  Google Scholar 

  29. K. GAUR and H. B. LAL, J. Mater. Sci. 19 (1984) 3325.

    Article  CAS  Google Scholar 

  30. H. B. LAL and R. N. PANDEY, Z. Naturforsch 330 (1978) 235.

    Google Scholar 

  31. R. N. PANDEY, V. PRATAP and H. B. LAL, Proc. Nat. Acad. Sci. India A 48 (1978) 1.

    CAS  Google Scholar 

  32. V. PRATAP and H. B. LAL, Nat. Acad. Sci. Lett. India 1 (1978) 381.

    CAS  Google Scholar 

  33. A. K. TRIPATHI and H. B. LAL, J. Phys. Soc. Jpn. 49 (1980) 1896.

    Article  CAS  Google Scholar 

  34. H. B. LAL and V. PRATAP, J. Mater. Sci. 17 (1982) 377.

    Article  CAS  Google Scholar 

  35. V. PRATAP, K. GAUR and H. B. LAL, Mater. Res. Bull. 22 (1987) 1381.

    Article  CAS  Google Scholar 

  36. A. K. TRIPATHI, PhD thesis, Gorakhpur University (1981).

  37. K. GAUR, PhD thesis, Gorakhpur University (1984).

  38. R. KUMAR, sci. Reporter 8 (1971) 568.

    Google Scholar 

  39. T. C. HERMAN and J. M. HONIG, “Thermoelectric and thermomagnetic effects and applications” (McGraw-Hill, New York, 1967) p. 142.

    Google Scholar 

  40. J. APPEL, Solid St. Phys. 21 (1968) 193.

    Article  CAS  Google Scholar 

  41. J. G. AUSTIN and N. F. MOTT, Adv. Phys. 18 (1969) 41.

    Article  CAS  Google Scholar 

  42. A. J. BOSMAN and H. J. VANDALL, Adv. Phys. 19 (1970) 1.

    Article  CAS  Google Scholar 

  43. H. B. LAL and Kanchan GAUR, J. Mater. Sci. 23 (1988) 919.

    Article  CAS  Google Scholar 

  44. H. J. SUMI, Phys. Soc. Jpn. 33 (1972) 327.

    Article  CAS  Google Scholar 

  45. E. V. DUPLEPOV, S. S. BOTSANOV and G. N. KVSTOVA, J. Struct. Chem. U.S.A. 13 (1972) 871.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaur, K., Singh, M. & Lal, H.B. Electrical transport in light rare-earth molybdates. JOURNAL OF MATERIALS SCIENCE 28, 3816–3822 (1993). https://doi.org/10.1007/BF00353184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353184

Keywords

Navigation