Skip to main content
Log in

Use of simple sequence length polymorphisms for genetic characterization of rat inbred strains

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Genetic monitoring is an essential component of colony management and for the rat has been accomplished primarily by using immunological and biochemical markers. Here, we report that simple sequence length polymorphisms (SSLPs) are a faster and more economical way of monitoring inbred strains of rats. We characterized 61 inbred strains of rats, using primer pairs for 37 SSLPs. Each of these loci appeared to be highly polymorphic, with the number of alleles per locus ranging between 3 and 14 and, as a result, all the 61 inbred strains tested in this study could be provided with a unique strain profile. These strain profiles are also used for estimating the degree of similarity between strains. This information may provide the rationale in selecting strains for genetic crosses or for other specific purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1987) Current Protocols in Molecular Biology. (New York: Green Publishing Associates and Wiley-Inter-Science) pp 2.2.1–2.2.3

    Google Scholar 

  • Bender, K., Adams, M., Baverstock, P.R., Den Bieman, M., Bissbort, S., Brdicka, R., Butcher, W., Cramer, D.V., Von Deimling, O., Festing, M.F.W., Günther, E., Guttman, R.D., Hedrich, H.J., Kendall, P.B., Kluge, R., Moutier, R., Simon, B., Womack, J.E., Yamada, J., Van Zutphen, B. (1984) Biochemical markers in inbred strains of the rat (Rattus norvegicus). Immunogenetics 19, 257–266

    Google Scholar 

  • Bender, K., Balough, P., Bertrand, M.F., Den Bieman, M., Von Deimling, O., Gutman, G.A., Hedrich, H.J., Eghtessadi, S., Hunt, S.V., Kluge, R., Matsumoto, K., Moralejo, D.H., Nagel, M., Portal, A., Prokop, C.-M., Seibert, R.T., Van Zutphen, L.F.M. (1994). Genetic characterization of inbred strains of the rat (Rattus norvegicus). J. Exp. Anim. Sci. 36, 151–165.

    Google Scholar 

  • Festing, M.F. (1974) Genetic reliability of commercially-bred laboratory mice. Lab. Anim. 8, 265–270

    Google Scholar 

  • Festing, M.F. (1982). Genetic contamination of laboratory animal colonies: an increasingly serious problem. ILAR NEWS XXV (4), 6–10

    Google Scholar 

  • Festing, M.F.W., Bender, K. (1984) Genetic relationships between inbred strains of rats. An analysis based on genetic markers at 28 biochemical loci. Genet. Res. 44, 271–281

    Google Scholar 

  • Gill III, T.J., Smith, G.J., Wissler, R.W., Kunz, H.W. (1989). The rat as an experimental animal. Science 245, 269–276

    Google Scholar 

  • Groen, A. (1977) Identification and genetic monitoring of mouse inbred strains using biochemical polymorphisms. Lab. Anim. 11, 209–214.

    Google Scholar 

  • Hearne, C.M., Soumitra, G., Todd, J.A. (1992) Microsatellites for linkage analysis of genetic traits. Trends Genet 8, 288–294

    Google Scholar 

  • Hedrich, J.J. (1990) Inbred strains in biomedical research. In: H.J. Hedrich, (ed.) Genetic Monitoring of Inbred Strains of Rats. (Stuttgart: Gustav Fisher Verlag), pp. 1–7

    Google Scholar 

  • Hedrich, H.J., Kluge, R. (1985) Genetic quality assurance for inbred strains of rats: present state of genetic monitoring. 8th ICLAS/CALAS Symposium Vancouver, Supplement. (Stuttgart, New York: Gustav Fisher Verlag), pp. 1–11.

    Google Scholar 

  • Hirayama, N., Kuramoto, T., Kondo, Y., Yamada, J., Serikawa, T. (1994). Genetic profiles of 12 inbred rat strains for 46 microsatellite loci selected as genetic monitoring markers. Exp. Anim. 43, 129–132

    Google Scholar 

  • Hoffman, H.A. (1978). Genetic quality control of the laboratory mouse (Mus musculus). In M. Morse, ed. Origins of Inbred Strains. (New York: Academic Press), pp. 217–234.

    Google Scholar 

  • Jacob, H.J., Lindpainter, K, Lincoln, S.E., Kusumi, K., Bunker, R., Mao, Y., Ganten, D., Dzau, V.J., Lander, E.S. (1991). Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224.

    Google Scholar 

  • Jacob, J.J., Brown, D.M., Bunker, R.K., Daly, M.J., Dzau, V.J., Goodman, A., Koike, G., Kren, V., Kurtz, T., Lernmark, A., Levan, G., Mao, Y., Petterson, A., Pravenec, M., Simon, J.S., Szpirer, C., Szpirer, J., Trolliet, M.R., Winer, E.S., Lander, E.S. (1995). A genetic linkage map of the laboratory rat, Rattus norvegicus. Nature Genet. 9, 63–69.

    Google Scholar 

  • Kluge, R., Hedrich, H.J. (1985). Tools for genetic monitoring of inbred strains of rats: biochemical genetic markers, 8th ICLAS/CALAS Symposium Vancouver, Supplement, (Stuttgart, New York: Gustav Fisher Verlag), pp. 15–27.

    Google Scholar 

  • Kunieda, T., Kobayashi, E., Tashibana, M., Ikadai, H., Imamichi, T. (1992). Polymorphic microsatellite loci of the rat (Rattus norvegicus). Mamm. Genome 3, 564–567.

    Google Scholar 

  • Kunieda, T., Nomura, N., Ishizaki, R., Kazushi, A., Toyoda, Y., Imamishi, T. (1993). Identification of inbred rat strains by using DNA fingerprinting method. Lab Anim. Sci. 43, 603–606.

    Google Scholar 

  • Lezin, E.M. St., Pravenec, M., Wong, A., Wang, J-M., Merriouns, S.N., Stec, D.E., Roman, R.J., Lau, D., Morris, R.C., Kurtz, T.W. (1994). Genetic contamination of Dahl SS/Jr rats. Impact on studies of saltsensitive hypertension. Hypertension 23, 786–790.

    Google Scholar 

  • Litt, M., Luty, J.A. (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397–401.

    Google Scholar 

  • Miesfeld, R., Krystal, M., Arnheim, N. (1981). A member of a new repeated sequence family which is conserved throughout eukaryotic evolution is found between the human delta and beta globin genes. Nucleic Acids Res 9, 5931–5947.

    Google Scholar 

  • Ott, J. (1991). Analysis of Human Genetic Linkage. (Baltimore: Johns Hopkins Center Press).

    Google Scholar 

  • Otsen, M., Den Bieman, M., Van Zutphen, L.F.M. (1993). Linkage of the gene for uncoupling protein to esterase-1,2 and haptoglobin in the rat. J. Hered. 84, 149–151.

    Google Scholar 

  • Prins, J.B. (1990). Genetic characterization of inbred strains of the rat. Thesis, Dept. Lab. Anim. Sci., Utrecht, The Nethenlands.

  • Russell, R.J., Festing, M.F.W., Deeny, A.A., Peters, A.G. (1993). DNA fingerprinting for genetic monitoring of inbred laboratory rats and mice. Lab. Anim. Sci. 43, 460–465.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning. A Laboratory Manual. (New York: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Serikawa, T., Kuramoto, T., Hilbert, P., Mori, M., Yamada, J., Dubay, C.J., Lindpainter, K., Ganten, D., Guénet, J.-L., Lathrop, G.M., Beckmann, J.S. (1992). Rat gene mapping using PCR-analyzed microsatellites. Genetics. 131, 703–725.

    Google Scholar 

  • Stallings, R.L., Ford, A.F., Nelson, D., Torney, D.C., Hildebrand, C.E., Moyzis, R.K. (1991). Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics 10, 807–815.

    Google Scholar 

  • Szpirer, J., Levan, G., Thorn, M., Szpirer, C. (1994). Gene mapping in the rat by mouse-rat cell hybridization: synteny of the albumin and alphafoetoprotein genes and assignment to chromosome 14. Cytogenet. Cell Genet. 38, 142–149.

    Google Scholar 

  • Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17, 6463–6471.

    Google Scholar 

  • Weber, J.L. (1990). Informativeness of human (dC-dA)n*(dG-dT)n polymorphisms. Genomics 7, 524–530.

    Google Scholar 

  • Weber, J.L., May, P.E. (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otsen, M., Den Bieman, M., Winer, E.S. et al. Use of simple sequence length polymorphisms for genetic characterization of rat inbred strains. Mammalian Genome 6, 595–601 (1995). https://doi.org/10.1007/BF00352364

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352364

Keywords

Navigation