Skip to main content
Log in

Mode I fracture behaviour of concrete under biaxial loading

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Most concrete structures are biaxially loaded when cracking occurs and propagates. A test equipment was developed to evaluate fracture mechanic parameters of concrete, based on the principle of wedge splitting. Notched cubic specimens are tested under stable crack propagation. An additional compressive load application device simulates a homogeneous biaxial state of stress. A force-crack opening displacement diagram is obtained from which the specific fracture energy is calculated. The strain softening behaviour is then evaluated by means of numerical modelling. The approach was applied for biaxially loaded concrete samples with 8, 16 and 32 mm maximum size aggregate (MSA). Based on the experimental data a model is developed and discussed. It is found that the fracture energy changes non-uniformly with increasing compressive stress level, and that interaction of microcracking and aggregate interlocking influences the fracture mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kupfer, H. K. Hilsdorf and H. Rüsche, J. Amer. Concr. Inst. Aug. 8 (1969) 656.

    Google Scholar 

  2. H. Kupfer and K. H. Gerstle, J. Eng. Mech. Div. ASCE, 99 (1973) 583.

    Google Scholar 

  3. L. J. M. Nelissen, HERON 18 (1972) 1.

    Google Scholar 

  4. I. Rosenthal and J. Glucklich, J. Amer. Concr. Inst. 11 (1970) 903.

    Google Scholar 

  5. K. H. Gerstle et al., Proc. ASCE 106 (1980) 1383.

    Google Scholar 

  6. M. D. Kotsovos and J. B. Newman, J. Amer. Concr. Inst. Sept. 9 (1977) 443.

    Google Scholar 

  7. L. Jiang, J. L. Huang, H. Dahai and X. Nianxiang, J. Amer. Concr. Inst. Mater. March–April 88 (1991) 181.

    Google Scholar 

  8. J. G. M. Van Mier, HERON 31 (1986) 1.

    Google Scholar 

  9. Idem, Materials and Structures. RILEM 19, (1986) 179.

    Google Scholar 

  10. A. J. Zielinski, in “Fracture Toughness and Fracture Energy of Concrete”, edited by F. H. Wittmann (Elsevier, Amsterdam, 1986) pp. 479–489.

    Google Scholar 

  11. J. Weerheijm, H. W. Reinhardt and S. Postma, in “Fracture Processes in Concrete, Rock and Ceramics”, edited by J. G. M. Van Mier, J. G. Rots and A. Bakker (Spon, London, 1991) pp. 839–848.

    Google Scholar 

  12. J. Weerheijm, PhD thesis, Delft University of Technology, 1992.

  13. H. Kreuzer, E. K. Tschegg and W. Wilk, in “Proceedings of the International Conference on Dam Fracture”, edited by V. Souma, R. Dungar and M. Moris, 11–13 September, Boulder, Co 1991 (Electric Power Research Institute, Palo Alto, CA, 1991) pp. 447–457.

    Google Scholar 

  14. E. K. Tschegg, H. Kreuzer and M. Zelezny, in “Proceedings of the First International Conference on Fracture Mechanics of Concrete Structure”, edited by Z. P. Bazant, 1–5 June, Breckenridge, CO, 1992 (Elsevier, London, 1992) pp. 455–460.

    Google Scholar 

  15. M. Elser, MSc thesis 1991, Technical University, Vienna, Austria (in German).

    Google Scholar 

  16. RILEM draft recommendation (50-FMC), Mater. & Struct. 18 (1985) 287.

  17. E. K. Tschegg, Patent AT No. 390328, patent application 31 January 1986 (in German).

  18. Idem, Patent AT No. 396997, patent application, 4 January, 1990 (in German).

  19. Idem, Materialprüfung/Mater. Testing 33 (1991) 338.

  20. E. Brühwiler and F. H. Wittmann, Eng. Frac. Mech. 35 (1990) 117.

    Google Scholar 

  21. Z. Guofan, Jiao Hui and X. Shilang in “Fracture Processes in Concrete, Rock and Ceramics”, edited by J. G. M. Van Mier, J. G. Rots and A. Bakker (Spon, London, 1991) pp. 789–798.

    Google Scholar 

  22. K. Rokugo, M. Iwasa, T. Suzuki and W. Koyanagi in “Fracture Toughness and Fracture Energy”, edited by H. Mihashi H. Takahashi and F. H. Wittmann (Balkema, Rotterdam, 1989) pp. 153–163.

    Google Scholar 

  23. E. K. Tschegg, T. M. Tan and S. E. Stanzl, ASTM Testing & Eval. (submitted).

  24. E. K. Tschegg, M. Elser and S. E. Stanzltschegg, Cement & Concr. Comp. (submitted).

  25. J. G. M. Van Mier, Cement & Concr. Res. 1 (1991) 1.

    Google Scholar 

  26. M. Kotsovos and J. B. Newman, Concr. Res. (London) 33 (1981) 103.

    Google Scholar 

  27. A. Hillerborg, A. Modeer, and P. E. Peterson, Cement & Concr. Res. 16 (1976) 773.

    Google Scholar 

  28. P. E. Roelfstra, PhD thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, 1988.

    Google Scholar 

  29. Idem, Private communication, 1991.

  30. T. C. Hsu, G. M. Sturman and G. Winter, Proc. Amer. Concr. Inst. 60 (1962) 209.

    Google Scholar 

  31. N. Nomura, H. Mihashie and M. Izumi, in “Fracture Processes in Concrete, Rock and Ceramics”, edited by J. G. M. Van Mier, J. G. Rots and A. Bakker (Spon, London, 1991) pp. 51–60.

    Google Scholar 

  32. P. Zdenek and P. Bazant, J. Eng. Mech. 110 (1984) 518.

    Google Scholar 

  33. H. K. Hilsdorf and W. Brameshuber, “Baustoffe” (Bauverlag, Wiesbaden, 1985) pp. 62–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschegg, E.K., Elser, M. & Kreuzer, H. Mode I fracture behaviour of concrete under biaxial loading. JOURNAL OF MATERIALS SCIENCE 30, 235–242 (1995). https://doi.org/10.1007/BF00352155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352155

Keywords

Navigation