Skip to main content
Log in

X-ray photoelectron spectroscopy and Fourier transform-infrared studies of transition metal phosphate glasses

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy and Fourier transform-infrared studies were carried out on phosphate glasses containing oxides of iron, cobalt, nickel, copper and zinc. The results suggest that the glasses containing iron and zinc may have structures in which both the phosphorus and the iron (or zinc) atoms are tetrahedrally coordinated by oxygen into three-dimensional structures which resemble the polymorphic forms of silica, whereas the glasses containing cobalt, nickel and copper may consist of polymeric chains of PO4 tetrahedra bonded to adjacent tetrahedra via bridging oxygens. These polyphosphate chains are linked together by the interaction between the metal cation and the oxygens of the network former. In addition, the core level 2p shake-up satellites of the 3d-transition metal ions in these glasses were studied. The results support a suggestion that the satellites in the glass are most likely due to the electron transfer from ligand to metal 3d orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Denton, H. Rawson and J. E. Stanworth, Nature 173 (1954) 1030.

    Google Scholar 

  2. M. Sayer and A. Mansigh, Phys. Rev. B6 (1972) 4629.

    Google Scholar 

  3. D. L. Kinser and L. K. Wilson, in “Recent Advances in Science and Technology of Materials”, Vol. 1, edited by A. Bishay (Plenum Press, New York, 1973), p. 77.

    Google Scholar 

  4. L. Murawski, C. H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids 32 (1979) 91.

    Google Scholar 

  5. C. H. Chung and J. D. Mackenzie, ibid. 42 (1980) 357.

    Google Scholar 

  6. E. E. Khawaja, M. A. Salim, M. A. Khan, F. F. Al-Adel, G. D. Khattak and Z. Hussain, ibid. 110 (1989) 33.

    Google Scholar 

  7. Z. Hussain, M. A. Salim, M. A. Khan and E. E. Khawaja ibid. 110 (1989) 44.

    Google Scholar 

  8. A. Rosencwaig, G. K. Wertheim and H. J. Guggenheim, Phys. Rev. Lett. 27 (1971) 479.

    Google Scholar 

  9. G. A. Vernon, G. Stucky and T. A. Carlson, Inorg. Chem. 15 (1976) 278.

    Google Scholar 

  10. K. S. Kim, J. Electron Spectrosc. Rel. Phenom. 3 (1974) 217.

    Google Scholar 

  11. Sven Larsson and M. Braga, Chem. Phys. Lett. 48 (1977) 596.

    Google Scholar 

  12. G. Van Der Laan, C. Westra, C. Haas and G. A. Sawatzky, Phys. Rev. B23 (1981) 4369.

    Google Scholar 

  13. E. E. Khawaja, Z. Hussain, M. S. Jazzar and O. B. Dabbousi, J. Non-Cryst. Solids 93 (1987) 45.

    Google Scholar 

  14. D. Dijkkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Min-Lee, W. L. McLean and M. Croft, Appl. Phys. Lett. 51 (1987) 619.

    Google Scholar 

  15. E. E. Khawaja, M. A. Khan, F. F. Al-Adel and Z. Hussain, J. Appl. Phys. 68 (1990) 1205.

    Google Scholar 

  16. J. Wong and C. A. Angell, “Glass Structure by Spectroscopy” (Marcel Dekker, New York, 1976).

    Google Scholar 

  17. B. M. J. Smets and D. M. Krol, Phys. Chem. Glasses 25 (1984) 113.

    Google Scholar 

  18. C. R. Bamford, “Colour Generation and Control in Glass” (Elsevier Scientific, Amsterdam, 1977).

    Google Scholar 

  19. T. Bates, in “Modern Aspects of the Vitreous State”, edited by J. D. Mackenzie (Butterworths, London, 1962) p. 195.

    Google Scholar 

  20. G. E. Mullenberg (ed.), “Handbook of X-ray Photoelectron Spectroscopy” (Perkin-Elmer Corporation, Eden Prairie, MN, 1979).

    Google Scholar 

  21. C. D. Wagner, in “Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy”, edited by D. Briggs and M. P. Seah (Wiley, Chichester, 1988) p. 477.

    Google Scholar 

  22. D. Briggs and J. C. Riviere, ibid.in “, p. 119.

    Google Scholar 

  23. J. E. Huheey, J. Phys. Chem. 70 (1966) 2086.

    Google Scholar 

  24. N. S. McIntyre and M. G. Cook, Anal. Chem. 47 (1975) 2208.

    Google Scholar 

  25. A. Balzarotti, M. DeCrescenzi, N. Motta, F. Patella and A. Sgarlata, Phys. Rev. B38 (1988) 6461.

    Google Scholar 

  26. D. Briggs and V. A. Gibson, Chem. Phys. Lett. 25 (1974) 493.

    Google Scholar 

  27. C. S. Kuivila, J. B. Butt and P. C. Stair, Appl. Surf. Sci. 32 (1988) 99.

    Google Scholar 

  28. G. Tyulier and S. Angelor, ibid. 32 (1988) 381.

    Google Scholar 

  29. N. S. McIntyre, D. D. Johnston, L. L. Coatesworth, R. D. Davidson and J. R. Brown, Surf. Inter. Anal. 15 (1990) 265.

    Google Scholar 

  30. D. C. Frost, C. A. McDowell and I. S. Woolsey, Mol. Phys. 27 (1974) 1473.

    Google Scholar 

  31. J. M. Arzeian and C. A. Hogarth, J. Mater. Sci. 26 (1991) 5353.

    Google Scholar 

  32. D. S. Goldman, Phys. Chem. Glasses 27 (1986) 128.

    Google Scholar 

  33. Y. Mizokawa, O. Komoda, H. Iwasaki, D. H. Shen and S. Nakamura, J. Electron Spectrosc. Rel. Phenom. 31 (1983) 335.

    Google Scholar 

  34. D. E. C. Corbridge, “The Structural Chemistry of Phosphorus” (Elsevier Scientific, Amsterdam, 1974), p. 81.

    Google Scholar 

  35. B. N. Nelson and G. J. Exarhos, J. Chem. Phys. 71 (1979) 2739.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khawaja, E.E., Durrani, S.M.A., Al-Adel, F.F. et al. X-ray photoelectron spectroscopy and Fourier transform-infrared studies of transition metal phosphate glasses. JOURNAL OF MATERIALS SCIENCE 30, 225–234 (1995). https://doi.org/10.1007/BF00352154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352154

Keywords

Navigation