Skip to main content
Log in

Thermodynamic analysis of irradiation-induced amorphization of intermetallic particles in Zircaloy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The intermetallic precipitate particles Zr2(Ni, Fe) in Zircaloy-2 and Zr(Cr, Fe)2 in Zircaloy-4, dissolve and amorphize under irradiation. Pursuing a previous analysis by Motta and Lemaignan, we have studied those effects on the basis of the metastable free-energy diagram of the reference system Zr-Fe (calculated using Miedema's model) and considering some aspects of the modification of this free-energy diagram by irradiation. We then can explain why both phases Zr2(Ni, Fe) and Zr(Cr, Fe)2 can be amorphized at low temperatures (below 350 K) without composition changes if sufficient energy can be accumulated by irradiation-produced defects and chemical disorder, and also that at intermediate temperatures (about 580 K) a driving force exists for particle amorphization at the matrix-particle interface for Zr(Cr, Fe)2 but not for Zr(Ni, Fe)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Johnson, Progr. Mater. Sci. 30 (1986) 81.

    Google Scholar 

  2. D. F. Pedraza, Metall. Trans. 21A (1990) 1809.

    Google Scholar 

  3. P. Chemelle, D. B. Knorr, J. B. Van Der Sande and R. M. Pellox, J. Nucl. Mater. 113 (1983) 58.

    Google Scholar 

  4. T. O. Malakhova and Z. M. Alekseyeva, J. Less-Common Metals 81 (1982) 293.

    Google Scholar 

  5. J. B. Van Der Sande and A. L. Bement, J. Nucl. Mater. 52 (1974) 115.

    Google Scholar 

  6. M. Griffiths, R. Gilbert and G. J. C. Carpenter, ibid. 150 (1987) 53.

    Google Scholar 

  7. F. Lefebvre and C. Lemaignan, ibid. 171 (1990) 223.

    Google Scholar 

  8. A. T. Motta, D. R. Olander and A. J. Machiels, ASTM-STP 1046 (American Society for Testing and Materials, Philadelphia, PA, 1989) p. 457.

    Google Scholar 

  9. R. W. Gilbert, M. Griffiths and G. J. C. Carpenter, J. Nucl. Mater. 135 (1985) 265.

    Google Scholar 

  10. W. J. S. Yang, R. P. Tucker, B. Cheng and R. B. Adamson, ibid. 138 (1986) 185.

    Google Scholar 

  11. W. J. S. Yang, ibid. 158 (1988) 71.

    Google Scholar 

  12. F. Garzarolli, P. Dewes, G. Mausner and H. H. Basso, in “Zirconium in the Nuclear Industry”, 8th International Symposium ASTM-STP 1023 (American Society for Testing and Materials, Philadelphia, PA, 1989) p. 641.

    Google Scholar 

  13. A. T. Motta and C. Lemaignan, J. Nucl. Mater. 195 (1992) 277.

    Google Scholar 

  14. Y. Etoh and S. Shimada, ibid. 200 (1993) 59.

    Google Scholar 

  15. R. A. Herring and D. O. Northwood, ibid. 159 (1985) 386.

    Google Scholar 

  16. A. K. Niessen, F. R. De Boer, R. Boom, P. F. De Châtel, W. C. M. Mattens and A. R. Miedema, Calphad 7 (1983) 51.

    Google Scholar 

  17. A. R. Miedema and A. K. Niessen, ibid. 7 (1983) 27.

    Google Scholar 

  18. A. K. Niessen and A. K. Miedema, Ber. Bunsenges. Phys. Chem. 87 (1983) 717.

    Google Scholar 

  19. P. I. Loeff, A. W. Weeber and A. R. Miedema, J. Less-Common Metals 140 (1988) 299.

    Google Scholar 

  20. A. R. Miedema and A. K. Niessen, Trans. Jpn Inst. Metals 29 (1988) 209.

    Google Scholar 

  21. J. G. Van Der Kolk, A. R. Miedema and A. K. Niessen, J. Less-Common Metals 145 (1988) 1.

    Google Scholar 

  22. F. R. De Boer, R. Boom, W. C. M. Mattens, A. R. Miedema and A. K. Niessen, “Cohesion in Metals. Transition Metal Alloys” (North-Holland, Amsterdam, 1988).

    Google Scholar 

  23. A. K. Niessen, A. R. Miedema, F. R. De Boer and R. Boom, Physica B151 (1988) 401.

    Google Scholar 

  24. J. M. López, J. A. Alonso and L. J. Gallego, Phys. Rev. B36 (1987) 3716.

    Google Scholar 

  25. J. D. Eshelby, Solid State Phys. 3 (1956) 79.

    Google Scholar 

  26. H. M. Fernandez, Thesis, University of Santiago de Compostela, Spain (1993).

    Google Scholar 

  27. K. A. Gschneidner Jr, Solid State Phys. 16 (1964) 275.

    Google Scholar 

  28. D. Arias and J. P. Abriata, Bull. Alloy Phase Diag. 9 (1988) 597.

    Google Scholar 

  29. L. Kaufman and H. Bernstein, “Computer Calculation of Phase Diagrams” (Academic Press, New York, London, 1970).

    Google Scholar 

  30. K. Bhanumurthy and G. B. Kale, Scripta Metall. Mater. 28 (1993) 753.

    Google Scholar 

  31. H. Okamoto, J. Phase Equil. 14 (1993) 652.

    Google Scholar 

  32. H. U. Krebs, J. Less-Common Metals 140 (1988) 17.

    Google Scholar 

  33. R. Tendler and J. P. Abriata, J. Nucl. Mater. 150 (1987) 251.

    Google Scholar 

  34. K.-Y. Liou and P. Wilkes, ibid. 87 (1979) 317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, C., De Tendler, R.H., Gallego, L.J. et al. Thermodynamic analysis of irradiation-induced amorphization of intermetallic particles in Zircaloy. JOURNAL OF MATERIALS SCIENCE 30, 196–200 (1995). https://doi.org/10.1007/BF00352150

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352150

Keywords

Navigation