Skip to main content
Log in

Thermoelastic stresses in ribbons and tubes grown from the melt by the Stepanov method

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ribbons and tubes grown from the melt by the Stepanov technique have a wide range of technical applications. Sapphire ribbons are used as substrates in microelectronics and sapphire tubes are used as gas-discharge balloons in laser engineering, fine chemical technology and high-vacuum equipment. Practice has shown that misorientation angles of small-angle boundaries in sapphire crystals should not exceed several degrees because an increase in the misorientation angles between blocks drastically lowers the strength and worsens the dielectric properties of these crystals. One of the main mechanisms of formation of the block structure of melt-grown crystals, including shaped sapphire crystals, is dislocation polygonization that begins when the dislocation density exceeds a certain critical value. In turn, dislocations are formed under deformations due to thermal stresses. Calculations of thermal fields in crystals and the corresponding thermoelastic stress fields can be used as an input to improve and optimize the growth process. The dependence of thermoelastic stresses in ribbons and tubes on the technological parameters has been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α1 :

Thermal diffusivity of the melt

α2 :

Thermal diffusivity of the crystal

k 1 :

Thermal conductivity of the melt

k 2 :

Thermal conductivity of the crystal

V 1 :

Velocity vector of the melt

V 2 :

Velocity vector of the growing crystal

V 0 :

Crystal pulling rate

ΔH f :

Latent heat of fusion

ρ1 :

Density of the melt

ρ2 :

Density of the crystal

in :

Interface normal vector

τ :

Crystal-melt interface normal vector

t :

Interface tangential vector

s :

Sided crystal-melt tangential vector

T m :

Melting temperature

T e :

Ambient temperature

T 01 :

Temperature at the bottom of the meniscus

T 02 :

Crystal temperature at the top of the meniscus

τ :

Normal vector at lateral surfaces of the crystal and meniscus

σ:

Stefan-Boltzmann constant

ε1 :

Emissivity of the meniscus lateral surface

ε2 :

Emissivity of the crystal lateral surface

g :

Acceleration due to gravity

ΣLG :

Melt-gas surface tension

a :

Die half dimension

φ0 :

Angle of growth

αt :

Thermal expansion coefficient

h 1 :

Heat transfer coefficient of the melt

h 2 :

Heat transfer coefficient of the crystal

C αs:

Heat capacity

E :

Young's modulus

ν:

Poisson's coefficient

μ:

Melt kinematic viscosity

P :

Pressure in the melt

References

  1. A. S. Jordan, A. R.Von Neida and R. Caruso, Bell System Tech. J. 59 (1980) 593.

    Google Scholar 

  2. S. Motakef and A. F. Witt, J. Crystal Growth 80 (1987) 37.

    Google Scholar 

  3. H. Alexander and P. Haasen, Solid State Phys. 22 (1968) 27.

    Google Scholar 

  4. D. Maroudas and R. A. Brown, J. Crystal Growth 108 (1991) 399.

    Google Scholar 

  5. S. Motakef, ibid. 114 (1991) 47.

    Google Scholar 

  6. D. E. Bornside, T. A. Kinney and R. A. Brown, ibid. 108 (1991) 779.

    Google Scholar 

  7. J. Lambropoulos, ibid. 104 (1990) 1.

    Google Scholar 

  8. P. I. Antonov, V. M. Krymov and V. S. Juferev, in “The 7th All-Union Conference on Crystal Growth”, Nauka, Moscow, edited by A. A. Chemov (1988) pp. 26–7.

    Google Scholar 

  9. J. P. Kalejs, L.-Y. Chin, and F. M. Carlson, J. Crystal Growth 61 (1983) 473.

    Google Scholar 

  10. P. D. Thomas, H. M. Ettouney and R. A. Brown, ibid. 76 (1986) 339.

    Google Scholar 

  11. J. J. Derby, and R. A. Brown, ibid. 87 (1988) 251.

    Google Scholar 

  12. C. A. J. Eletcher, “Computational Galerkin Methods” (Springer, New York, Berlin, Heidelberg, Tokyo, 1984).

    Google Scholar 

  13. A. R. Mitchell and R. Wait, “The Finite-Element Method In Partial Differential Equations” (Wiley, Chichester, New York, Brisbane, Toronto, 1977).

    Google Scholar 

  14. S. V. Artemov, I. V. Aljabjeev and V. S. Papkov, Izv. An. SSSR, Ser. Phys. 52 (1988) 1977.

    Google Scholar 

  15. M. V. Klassen-Nekliudova and Kh. S. Bagdasarov (eds) “Ruby and Sapphire” (Nauka, Moscow, 1974) p. 236 (in Russian).

    Google Scholar 

  16. G. V. Samsonov (ed.) “Physical-chemical properties of the oxides. Handbook” (Metallurgija, Moscow, 1978) 472 pp. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhdanov, A.V., Nikolaeva, L.P. & Rossolenko, S.N. Thermoelastic stresses in ribbons and tubes grown from the melt by the Stepanov method. JOURNAL OF MATERIALS SCIENCE 30, 75–84 (1995). https://doi.org/10.1007/BF00352134

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352134

Keywords

Navigation