Skip to main content
Log in

The effects of boundary conditions on the basal glide of ice crystals in compression

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Creep experiments were conducted on ice crystals in compression to investigate the effects of boundary conditions on a single-slip system deformed in plane strain. Friction at the platens of the deformation apparatus introduces a bending moment which causes a variation in the amount of lattice rotation across the specimen. This is shown to occur in mechanically constrained crystals observed through plane polarized light. Relieving the constraints and minimizing friction at the ice-platen contact leads to the widening of the sample near the specimen-platen interface and the production of ‘tails’ symmetrically disposed about the longitudinal axis of the deformed crystals. This is interpreted to originate from a bending moment in the opposite sense from that obtained in the constrained crystals, resulting from a progressive increase in slip displacement towards the platens where the segments of the slip plane become shorter. When the crystal ends were constrained but allowed to move sideways, a simple shear regime was established in which lattice slip was concentrated in the centre of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. R. W. K. Honeycombe, “The plastic deformation of metals” (Edward Arnold, London, 1984).

    Google Scholar 

  2. C. N. Reid, “Deformation geometry for materials scientists” (Pergamon Press, N.Y., 1973).

    Google Scholar 

  3. J.-P. A. Immarigeon and J. J. Jonas, Acta Metall. 19 (1971) 1053.

    Google Scholar 

  4. T. Bretheau and C. Dolin, J. Mater. Sci. 13 (1978) 587.

    Google Scholar 

  5. J. P. Poirier, “Creep of crystals” (Cambridge University Press, N.Y., 1985).

    Google Scholar 

  6. J. B. Hess and C. S. Barrett, J. Metals 1 (1949) 599.

    Google Scholar 

  7. J. Washburn and E. R. Parker, ibid. 4 (1952) 1076.

    Google Scholar 

  8. J. Friedel, “Dislocations” (Pregamon Press, N.Y., 1967).

    Google Scholar 

  9. B. Kamb, in “Physics and chemistry of ice” (Royal Society of Canada, Ottawa) edited by E. Whalley, S. J. Jones and L. W. Gold (University of Toronto Press, Toronto, 1973) p. 28.

    Google Scholar 

  10. P. V. Hobbs, “Ice physics” (Clarendon Press, Oxford, 1974).

    Google Scholar 

  11. R. L. Brown, in Proceedings of the 6th International Cold Regions Engineering Speciality Conference, edited by D. S. Sodhi (Cold Reg. Engineering, N.Y. American Society of Civil Eng. 1991) p. 483.

  12. A. Fukuda, T. Hondoh and A. Higashi, J. Physique 48 (suppl. to #3), Colloque C1 (1987) 163.

    Google Scholar 

  13. A. Higashi, “Lattice defects in ice crystals” (Hokkaïdo University Press, Sapporo, Japan, 1988).

    Google Scholar 

  14. J. W. Glen and M. F. Perutz, J. Glaciol. 2 (1954) 397.

    Google Scholar 

  15. U. Nakaya, in Symposium de Chamonix #47 (L'Association internationale d'hydrologie scientifique IASH, 1958) p. 229.

  16. C. J. Readings and J. T. Bartlett, J. Glaciol. 7 (1968) 479.

    Google Scholar 

  17. P. Duval, M. F. Ashby and I. Anderman, J. Phys. Chem. 87 (1983) 4066.

    Google Scholar 

  18. S. Ahmad and R. W. Whitworth, Phil. Mag. A 57 (1988) 749.

    Google Scholar 

  19. W. B. Kamb, J. Glaciol. 30 (1961) 1097.

    Google Scholar 

  20. F, P. Bloss, “An introduction to the methods of optical crystallography” (Holt Rinehart and Winston, Toronto, 1961).

    Google Scholar 

  21. P. Barrette, B. Michel and E. Stander, J. Cryst. Growth 131 (1993) 153.

    Google Scholar 

  22. G. P. Rigsby, J. Glaciol. 3 (1960) 589.

    Google Scholar 

  23. K. Higushi, ibid. (1957) 131.

    Google Scholar 

  24. N. K. Sinha, Phil. Mag. 36 (1977) 1385.

    Google Scholar 

  25. N. K. Sinha, J. Glaciol. 21 (1978) 385.

    Google Scholar 

  26. A. H. Cottrell, in “Progress in metal physics”, edited by B. Chalmers (1949) p. 77.

  27. R. W. Cahn and P. Haasen, “Physical metallurgy” (North-Holland Physics Publishing, N.Y., 1983).

    Google Scholar 

  28. P. Barrette and N. K. Sinha, submitted to J. Mater. Sci. Lett.

  29. G. P. Rigsby, J. Glaciol 3 (1958) 707.

    Google Scholar 

  30. S. Steinemann, Beitrage zur Geologie der Schweiz (Hydrologie) 10 (1958).

  31. T. R. Butkovich and J. K. Landauer, SIPRE Res. Rep. 56 (1959).

  32. W. B. Durham and C. Goetze, J. Geophys. Res. 82 (1977) 5737.

    Google Scholar 

  33. J. Dodsworth, C. B. Carter and D. L. Kohlstedt, in “Character of grain boundaries”, edited by M. F. Yan and A. H. Heuer (American Ceramic Society, 1983) p. 73.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrette, P.D., Sinha, N.K., Stander, E. et al. The effects of boundary conditions on the basal glide of ice crystals in compression. JOURNAL OF MATERIALS SCIENCE 30, 63–68 (1995). https://doi.org/10.1007/BF00352132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352132

Keywords

Navigation