Skip to main content
Log in

Structural aspects of the ferroelectric phase transition in lanthanum-substituted lead titanate

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural characteristics and ferroelectric phase transition behaviour of chemically derived lanthanum-substituted lead titanate powders have been investigated by high-temperature X-ray diffraction and differential scanning calorimetry. Using X-ray line profile analyses and precise lattice parameter determinations, the important influence of strain coupling through lanthanum/vacancy-induced defect fields on the first-order character of the ferroelectric phase transition was demonstrated. The relaxation of the lattice to the defects as observed in the X-ray measurements was correlated with the onset of diffuse phase transition behaviour revealed by the calorimetry experiments. The lattice relaxation mechanism was connected with the appearance of mesoscopic modulations of the ferroelectric domain structure, and with anomalies in the dielectric behaviour near the transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Glazer and S. A. Mabud, Acta. Crystallogr. B34 (1978) 1065.

    Google Scholar 

  2. G. A. Samara, Ferroelectrics 2 (1972) 277.

    Google Scholar 

  3. G. Burns and B. A. Scott, Phys. Rev. Lett. 25 (1970) 1191.

    Google Scholar 

  4. M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials” (Clarendon, Oxford, 1977) p. 248.

    Google Scholar 

  5. R. J. Nelmes, R. O. Piltz, W. F. Kuhs, Z. Tun and R. Restori, Ferroelectrics 108 (1990) 165.

    Google Scholar 

  6. E. G. Fesenko, V. G. Gavrilyachenko and E. V. Zarochentsev, Izv. Akad. Nauk SSSR Ser. Fiz. 34 (1970) 2541.

    Google Scholar 

  7. Idem, Bull. Acad Sci. USSR 34 (1970) 2262.

    Google Scholar 

  8. M. J. Haun, E. Furman, S. J. Jang, H. A. McKinstry and L. E. Cross, J. Appl. Phys. 62 (1987) 3331.

    Google Scholar 

  9. G. A. Rossetti Jr, K. R. Udayakumar, M. J. Haun and L. E. Cross, J. Amer. Ceram. Soc. 73 (1990) 3334.

    Google Scholar 

  10. A. F. Devonshire, Adv. Phys. 3 (1954) 85.

    Google Scholar 

  11. S. A. Mabud and A. M. Glazer, J. Appl. Crystallogr. 12 (1979) 49.

    Google Scholar 

  12. G. Shirane, R. Pepinsky and B. C. Frazer, Acta. Crystallogr. 9 (1956) 131.

    Google Scholar 

  13. S. C. Abrahams, S. K. Kurtz and P. B. Jamieson, Phys. Rev. 172 (1968) 551.

    Google Scholar 

  14. V. G. Gavrilyachenko, R. I. Spinko, M. A. Martynenko and E. G. Fesenko, Sov. Phys. -Solid State 12 (1970) 1203.

    Google Scholar 

  15. S. Shirasaki, Solid State Commun. 9 (1971) 1217.

    Google Scholar 

  16. S. Shirasaki, K. Takahashi and K. Kakegawa, J. Amer. Ceram. Soc. 56 (1973) 430.

    Google Scholar 

  17. D. Hennings, Mater. Res. Bull. 6 (1971) 329.

    Google Scholar 

  18. D. Hennings and K. H. Härdtl, Phys. Status Solidi (a) 3 (1970) 465.

    Google Scholar 

  19. R. J. Nelmes and A. Katrusiak, J. Phys. C: Solid State Phys. 19 (1986) L725.

    Google Scholar 

  20. R. Ramirez, M. F. Lapeña and J. A. Gonzalo, Phys. Rev. B42 (1990) 2604.

    Google Scholar 

  21. K. Wojcik, Ferroelectrics 99 (1989) 5.

    Google Scholar 

  22. K. Keizer, G. J. Lansink and A. J. Burggraaf, J. Phys. Chem. Solids 39 (1978) 59.

    Google Scholar 

  23. G. Burns and B. A. Scott, Solid State Commun. 13 (1973) 417.

    Google Scholar 

  24. G. Burns, Phys. Rev. B13 (1976) 215.

    Google Scholar 

  25. R. Merlin, J. A. Sanjurjo and A. Pinczuk, Solid State Commun. 16 (1975) 931.

    Google Scholar 

  26. T. W. Dekleva, J. M. Hayes, L. E. Cross and G. L. Geoffroy, J. Amer. Ceram. Soc. 71 (1988) C280.

    Google Scholar 

  27. J. B. Blum and S. R. Gurkovich, J. Mater. Sci. 20 (1985) 4479.

    Google Scholar 

  28. M. M. Hall Jr, V. G. Veerarghavan, H. Rubin and P. G. Winchell, J. Appl. Cryst. 10 (1977) 66.

    Google Scholar 

  29. B. Hemingway, Amer. Mineralogist 72 (1987) 273.

    Google Scholar 

  30. C. A. Randall, G. A. Rossetti Jr and W. Cao, Ferroelectrics in press.

  31. E. Salje, Phase Transitions 34 (1991) 25.

    Google Scholar 

  32. C. N. W. Darlington and R. J. Cernik, J. Phys: Condens. Matter 3 (1992) 4387.

    Google Scholar 

  33. A. P. Levanyuk and A. S. Sigov, “Defects and Structural Phase Transitions” (Gordon and Breach, New York, 1986) p. 172.

    Google Scholar 

  34. S. Marais, V. Heine, C. Nex and E. Salje, Phys. Rev. Lett. 66 (1991) 2480.

    Google Scholar 

  35. E. Salje, U. Bismayer, B. Wruck and J. Hensler, Phase Transitions 35 (1991) 61.

    Google Scholar 

  36. W. Cao and J. A. Krumhansl, Phys. Rev. B42 (1990) 4334.

    Google Scholar 

  37. G. A. Rossetti Jr, Ferroelectrics 133 (1992) 103.

    Google Scholar 

  38. G. A. Rossetti Jr, W. Cao and C. A. Randall, ibid. in press.

  39. C. A. Randall, D. J. Barber and R. W. Whatmore, J. Microsc. 145 (1987) 275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossetti, G.A., Cross, L.E. & Cline, J.P. Structural aspects of the ferroelectric phase transition in lanthanum-substituted lead titanate. JOURNAL OF MATERIALS SCIENCE 30, 24–34 (1995). https://doi.org/10.1007/BF00352127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352127

Keywords

Navigation