Skip to main content
Log in

Splicing of group II introns in spinach chloroplasts (in vivo): analysis of lariat formation

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

To investigate the mechanism of chloroplast mRNA splicing in vivo, RNAs from four spinach chloroplast group II intron-containing genes were analyzed. For each of these genes, atpF, rpoC1, petD, and petB, Northern analysis of chloroplast RNAs detected putative lariat-intron/3′ exon-splicing intermediates. Treatment of these RNAs with HeLa cell-debranching extract caused the putative splicing intermediates to disappear, thereby confirming their identities. The lariat-splicing intermediates were further examined by reverse transcriptase extension to determine the branch point location. The in vivo branch points of the atpF and petD introns were found to be eight bases upstream of their respective 3′ intron/exon boundaries. In contrast, no splicing intermediates could be detected by primer-extension analysis of petB and rpoC1. This unexpected result served to demonstrate that the quantity of lariat-intron/3′ exon-splicing intermediates present in the chloroplast RNA population is considerably less in the cases of rpoC1 and petB compared to atpF and petD. The steady-state level of any splicing intermediate is the result of a balance between the splicing kinetics of a particular RNA and the susceptibility of the splicing intermediate to degradation. We conclude that the balance between these two factors varies significantly for chloroplast introns, even for those, such as petB and petD, that are transcribed from the same promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel FR, Roger B, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1988) In: Current protocols in molecular biology. Greene Publishing Associate and Wiley-Interscience, New York, USA, pp 4.8.1–4.8.3

    Google Scholar 

  • Burke JM (1989) Methods Enzymol 180:533–545

    Google Scholar 

  • Cech TR (1990) Annu Rev Biochem 59:543–568

    Google Scholar 

  • Christopher DA, Hallick RB (1991) Nucleic Acids Res 17:7591–7608

    Google Scholar 

  • Copertino DW, Hallick RB (1991) EMBO J 10:433–442

    Google Scholar 

  • Hallick RB (1989) Plant Mol Biol Rep 7:266–275

    Google Scholar 

  • Hallick RB, Chelm BK, Gray PW, Orozco EM, Jr. (1977) Nucleic Acids Res 4:3055–3063

    Google Scholar 

  • Heinemeyer W, Alt J, Herrmann RG (1984) Curr Genet 8:543–549

    Google Scholar 

  • Hudson GS, Mason JG, Holton TA, Koller B, Cox GB, Whitfeld PR, Bottomley W (1987) J Mol Biol 196:283–298

    Google Scholar 

  • Hudson GS, Holton TA, Whitfeld PR, Bottomley W (1988) J Mol Biol 200:639–654

    Google Scholar 

  • Jacquier A, Michel F (1987) Cell 50:17–29

    Google Scholar 

  • Jacquier A, Rosbash M (1986) Science 234:1099–1104

    Google Scholar 

  • Jarrell KA, Dietrich RC, Perlman P (1988a) Mol Cell Biol 8:2361–2366

    Google Scholar 

  • Jarrell KA, Peebles CL, Dietrich RC, Romiti SL, Perman PS (1988b) J Biol Chem 263: 3432–3439

    Google Scholar 

  • Michel F, Dujon B (1983) EMBO J 2: 33–38

    Google Scholar 

  • Michel F, Jacquier A (1987) Cold Spring Harbor Symp Quant Biol 52: 201–212

    Google Scholar 

  • Michel F, Umesono K, Ozeki H (1989) Gene 82: 5–30

    Google Scholar 

  • Muller MW, Schweyen RJ, Schmelzer C (1988) Nucleic Acids Res 16: 7383–7395

    Google Scholar 

  • Orozco EM, Jr., Mullet JE, Hanley-Bowdoin L, Chua N-H (1986) Methods Enzymol 118: 232–253

    Google Scholar 

  • Ozeki H, Ohyama K, Inokuchi H, Fukzawa H, Kohchi T, Sano T, Nakahigashi K, Umesono K (1987) Cold Spring Harbor Symp Quant Biol 52: 791–804

    Google Scholar 

  • Padgett RA, Konarska MM, Aebi M, Hornig H, Weismann C, Sharp PA (1985) Proc Natl Acad Sci USA 82: 8349–8353

    Google Scholar 

  • Palmer JD, Thompson WF (1981) Gene 15: 21–26

    Google Scholar 

  • Peebles CL, Perlman PS, Mechlenburg KL, Petrillo ML, Tabor JH, Jarrell KA, Cheng H-L (1986) Cell 44: 213–223

    Google Scholar 

  • Peebles CL, Benatan EJ, Jarrell KA, Perlman PS (1987) Cold Spring Harbor Symp Quant Biol 52: 223–232

    Google Scholar 

  • Ruskin B, Green MR (1985) Science 229: 135–140

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schmelzer C, Muller MW (1987) Cell 51: 753–762

    Google Scholar 

  • Schmelzer C, Schwejen RJ (1986) Cell 46: 557–565

    Google Scholar 

  • Tabak HF, van der Horst G, Winter AJ, Smith J, van der Veer R, Kwakmans JHJM, Grivell LA, Arnberg AC (1987) Cold Spring Harbor Symp Quant Biol 52: 213–221

    Google Scholar 

  • Veen R van der, Arnberg AC, van der Horst G, Bonen L, Tabak HF, Grivell LA (1986) Cell 44: 225–234

    Google Scholar 

  • Westhoff P, Herrmann RG (1988) Eur J Biochem 171: 551–564

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. B. Sears

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JK., Hollingsworth, M.J. Splicing of group II introns in spinach chloroplasts (in vivo): analysis of lariat formation. Curr Genet 23, 175–180 (1993). https://doi.org/10.1007/BF00352018

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352018

Key words

Navigation