Skip to main content
Log in

Regional sequence homologies in starch-degrading enzymes

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The enzymatic hydrolysis of starch, consisting of linear (amylose) and branched (amylopectin) glucose polymers, is catalyzed by α-, β- and glucoamylases (γ-amylases), cyclodextrinases, α-glucosidases, and debranching enzymes. Saccharomyces cerevisiae cannot utilize starch. Our laboratory has previously co-expressed the Bacillus amyloliquefaciens α-amylase (AMY) and the Saccharomyces diastaticus glucoamylase (STA2) genes in S. cerevisiae. A gene encoding a debranching enzyme (pullulanase) from Klebsiella pneumoniae ATCC15050 was cloned and its nucleotide sequence determined. This gene will be co-expressed with the α- and γ-amylase to produce an amylolytic S. cerevisiae strain. Extensive data base comparisons of the K. pneumoniae pullulanase amino-acid sequence with the the amino-acid sequences of other debranching enzymes and α-, β- and γ-amylases (from bacteria, yeasts, higher fungi and higher eukaryotes), indicated that these debranching enzymes have amino-acid regions similar to those found in α-amylases. The conserved regions in α-amylases comprise key residues that are implicated in substrate binding, catalysis, and calcium binding and are as follows. Region 1: DVVINH; region 2: GFRLDAAKH and region 4: FVDNHD. When comparing conserved regions, no similarity could be detected between debranching enzymes and β- and γ-amylases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender H, Lehmann J, Wallenfels K (1959) Biochim Biophys Acta 36:309–316

    Google Scholar 

  • Binder F, Huber O, Böck A (1986) Gene 47:269–277

    Google Scholar 

  • Buisson G, Duée E, Haser R, Payan F (1987) EMBO J 6:3909–3916

    Google Scholar 

  • Catlew BJ, Whelan WJ (1971) Arch Biochem Biophys 143:138–142

    Google Scholar 

  • Chapon C, Raibaud O (1985) J Bacteriol 164:639–645

    Google Scholar 

  • D'Enfert C, Pugsley AP (1987) Mol Microbiol 1:159–168

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) Nucleic Acids Res 12:387–395

    Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RAJ (1991) Microbiol Rev 55:303–315

    Google Scholar 

  • Ihara H, Sasaki T, Tsuboi A, Yamagata H, Tsukagoshi N, Udaka S (1985) J Biochem 98:95–103

    Google Scholar 

  • Jespersen HM, MacGregor EA, Sierks MR, Svensson B (1991) Biochem J 280:51–55

    Google Scholar 

  • Kleinman M, Wilkenson AE, Wright IP, Evans IH, Bevan EA (1988) Biochem J 249:163–170

    Google Scholar 

  • Kuriki T, Imanaka T (1989) J Gen Microbiol 135:1521–1528

    Google Scholar 

  • Kuriki T, Takata H, Okada S, Imanaka T (1991) J Bacteriol 173:6147–6152

    Google Scholar 

  • Lappalainen A, Niku-Paovola M-L, Suortti T, Poutanen K (1991) Starch 43:477–482

    Google Scholar 

  • Lee EYC, Whelan WJ (1971) Glycogen and starch debranding enzymes. In: Boyer (ed) The enzymes, vol 5. Academic Press, New York, pp 191–234

    Google Scholar 

  • Lee S, Rasheed S (1990) Bio Techniques 9:676–679

    Google Scholar 

  • Long CM, Virolle M-J, Chang S-Y, Chang S, Bibb MJ (1987) J Bacteriol 169:5745–5754

    Google Scholar 

  • Mackay RM, Baird S, Dove MJ, Erratt JA, Gines M, Moranelli F, Nasim A, Willick GE, Yaguchi M, Seligy VL (1985) Bio Systems 18:279–292

    Google Scholar 

  • Manners DJ (1989) Carbohydrate Pol 11:87–112

    Google Scholar 

  • Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) J Biochem 95:697–702

    Google Scholar 

  • Melasniemi H, Paloheimo M, Hemiö L (1990) J Gen Microbiol 136:447–454

    Google Scholar 

  • Miyajima A, Bond MW, Otsu K, Ken-ichi A, Arai N (1985) Gene 37:155–161

    Google Scholar 

  • Modena D, Vanoni M, England S, Marmur J (1986) Arch Biochem Biophys 248:138–150

    Google Scholar 

  • Morgan FJ, Adams KR, Priest FG (1979) J Appl Bacteriol 46:291–294

    Google Scholar 

  • Nakajima R, Imanaka T, Aiba S (1986) Appl Microbiol Biotechnol 23:355–360

    Google Scholar 

  • Priest FG (1984) Extracellular enzymes. Van Nostrand Reinhold, England

    Google Scholar 

  • Pugsley AP, Kornacker MG, Poquet I (1991a) Mol Microbiol 5:343–352

    Google Scholar 

  • Pugsley AP, Poquet I, Kornacker MG (1991b) Mol Microbiol 5:865–873

    Google Scholar 

  • Rogers JC (1985) Biochem Biophys Res Commun 128:470–476

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schlegel HG (1987) General microbiology, 7th edn. Cambridge University Press, New York

    Google Scholar 

  • Sierks MR, Ford C, Reilly PJ, Svensson B (1993) Prot Eng 6:75–79

    Google Scholar 

  • Steyn AJC, Pretorius IS (1991) Gene 100:85–93

    Google Scholar 

  • Svensson B (1988) FEBS Lett 230:72–76

    Google Scholar 

  • Toda H, Kondo K, Narita K (1982) Proc Japan Acad 58(B):208–212

    Google Scholar 

  • Tucker M, Grohmann K, Himmel M (1984) Biotech Bioeng Symp No. 14, pp 279–293

  • Vieira J, Messing J (1982) Gene 19:259–268

    Google Scholar 

  • Vihinen M, Mäntsälä P (1989) Crit Rev Biochem Mol Biol 24:329–418

    Google Scholar 

  • Vihinen M, Mäntsälä P (1990) Biochem Biophys Res Comm 166:61–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F.K. Zimmermann

Present address: M.P.I. für Biophysikalische Chemie, Postfach 2841, D-3400 Göttingen, Germany (until 31 Dec 1993)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janse, B.J.H., Steyn, A.J.C. & Pretorius, I.S. Regional sequence homologies in starch-degrading enzymes. Curr Genet 24, 400–407 (1993). https://doi.org/10.1007/BF00351848

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351848

Key words

Navigation