Skip to main content
Log in

Transformation of Trichoderma reesei with the Hormoconis resinae glucoamylase P (gamP) gene: production of a heterologous glucoamylase by Trichoderma reesei

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A cDNA encoding for the glucoamylase P enzyme (GAMP) of the fungus Hormoconis resinae was introduced into the cellulolytic filamentous fungus Trichoderma reesei under the control of the promoter of the major cellulase gene (cbh1) of Trichoderma. The transforming vector plasmid used was found to be integrated into the genome of T. reesei at various locations and in multiple copies. The size of the GAMP secreted by Trichoderma varied because of different glycosylation patterns. The best transformant strains secreted about 700 mg/l of active GAMP, which is 20-fold more than obtained with H. resinae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho S, Olkkonen V, Jalava T, Paloheimo M, Bühler R, Niku-Paavola M-L, Bamford DH, Korhola M (1991) Eur J Biochem 200: 643–649

    Google Scholar 

  • Bailey MJ, Nevalainen KMH (1981) Enzyme Microbiol Technol 3: 153–157

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7: 1513–1523

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) J Mol Biol 41: 459–472

    Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Biochemistry 18: 5294–5299

    Google Scholar 

  • Durand H, Baron M, Calmels T, Tiraby G (1988a) Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains. In: Aubert J-P, Beguin P, Millet J (eds) Biochemistry and genetics of cellulose degradation. Academic Press, New York, pp 135–151

    Google Scholar 

  • Durand H, Clanet M, Tiraby G (1988b) Enzyme Microbiol Technol 10: 341–345

    Google Scholar 

  • Fagerström R, Vainio A, Suoranta K, Pakula T, Kalkkinen N, Torkkeli H (1990) J Gen Microbiol 136: 913–920

    Google Scholar 

  • Garger SJ, Griffith DM, Grill LK (1983) Biochem Biophys Res 117: 835–842

    Google Scholar 

  • Gritzali M, Brown RD Jr (1979) Adv Chem Ser 81: 237–260

    Google Scholar 

  • Gruber F, Visser J, Kubicek CP, de Graaff LH (1990) Curr Genet 18: 71–76

    Google Scholar 

  • Harkki A, Uusitalo J, Bailey M, Penttilä M, Knowles JKC (1989) Bio/Technology 7: 596–603

    Google Scholar 

  • Henrissat B, Driguez H, Viet C, Schülein M (1985) Bio/Technology 3: 722–726

    Google Scholar 

  • Hynes MJ, Corrick CM, King JA (1983) Mol Cell Biol 3: 1430–1439

    Google Scholar 

  • Laemmli UK (1970) Nature 227: 680–685

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring, Harbor, New York

    Google Scholar 

  • Manjunath P, Shenoy BC, Raghavendra Rao MR (1983) J Appl Biochem 5: 235–260

    Google Scholar 

  • McCleary BV, Anderson MA (1980) Carbohydr Res 86: 77–96

    Google Scholar 

  • Montenecourt BS (1983) Trends Biotechnol 1: 156–161

    Google Scholar 

  • Montenecourt BS, Eveleigh DE (1979) Adv Chem Ser 181: 289–301

    Google Scholar 

  • Nevalainen H, Penttilä M, Harkki A, Knowles JKC (1991) The molecular biology of Trichoderma and its application to the expression of both homologous and heterologous genes. In: Leong SA, Berka R (eds) Molecular industrial mycology. Marcel Dekker Inc., New York, pp 129–148

    Google Scholar 

  • Nyyssönen E, Takkinen K, Alfthan K, Sizmann D, Saloheimo A, Siika-Aho M, Bailey M, Penttilä M, Keränen S (1992) 1st European Conference on Fungal Genetics, Nottingham, England, Abstract no P2/06

  • Pazur JH, Ando T (1959) J Biol Chem 234: 1966–1970

    Google Scholar 

  • Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987) Gene 61: 155–164

    Google Scholar 

  • Raeder U, Broda P (1985) Lett Appl Microbiol 1: 17–20

    Google Scholar 

  • Reilly PJ (1979) Appl Biochem Bioeng 2: 185–206

    Google Scholar 

  • Saha BC, Mitone T, Ueda W (1979) Stärke 31: 307–314

    Google Scholar 

  • Saloheimo M, Barajas V, Niku-Paavola M-L, Knowles JKC (1989) Gene 85: 343–351

    Google Scholar 

  • Saloheimo M, Niku-Paavola M-L (1991) Bio/Technology 9: 987–990

    Google Scholar 

  • Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwock S, Myambo K, Innis M (1983) Bio/Technology 1: 691–696

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98: 503–517

    Google Scholar 

  • Teeri T, Salovuori I, Knowles J (1983) Bio/Technology 1: 696–699

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Proc Natl Acad Sci USA 76: 4350–4354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Grivell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joutsjoki, V.V., Torkkeli, T.K. & Helena Nevalainen, K.M. Transformation of Trichoderma reesei with the Hormoconis resinae glucoamylase P (gamP) gene: production of a heterologous glucoamylase by Trichoderma reesei . Curr Genet 24, 223–228 (1993). https://doi.org/10.1007/BF00351796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351796

Key words

Navigation