Skip to main content
Log in

In vitro mutagenesis of the mitochondrial leucyl-tRNA synthetase of S. cerevisiae reveals residues critical for its in vivo activities

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The mitochondrial leucyl-tRNA synthetase (mLRS) of Saccharomyces cerevisiae is involved in both mitochondrial protein synthesis and pre-mRNA splicing. We have created mutations in the regions HIGH, GWD and KMSKS, which are involved in ATP-, amino acid-and tRNA-binding respectively, and which have been conserved in the evolution of group I tRNA synthetases. The mutants GRD and NMSKS have no discernible phenotype. The mutants AWD and ARD act as null alleles and lead to the production of 100% cytoplasmic petites. The mutants HIGN, NIGH and KMSNS are unable to grown on glycerol even in the presence of an intronless mitochondrial genome and accumulate petites to a greater extent than the wild-type but less than 40%. Experiments with an imported bI4 maturase indicate that the lesion in these mutations primarily affects the synthetase and not the splicing functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akins RA, Lambowitz AM (1987) Cell 50:331–345

    Google Scholar 

  • Banroques J, Delahodde A, Jacq C (1986) Cell 46:837–844

    Google Scholar 

  • Banroques J, Perea J, Jacq C (1987) EMBO J 6:1085–1091

    Google Scholar 

  • Bonneaud N, Ozier-Kalogeropoulos O, Li G-Y, Labouesse M, Minvielle-Sebastia L, Lacroute F (1991) Yeast 7:609–615

    Google Scholar 

  • Bousquet I, Dujardin G, Poyton RO, Slonimski PP (1990) Curr Genet 18:117–124

    Google Scholar 

  • Carignani G, Groudinsky O, Frezza D, Schiavon E, Bergantino E, Slonimski PP (1983) Cell 35:733–742

    Google Scholar 

  • Cech TR (1990) Annu Rev Biochem 59:543–568

    Google Scholar 

  • Claisse M, Slonimski PP, Johnson J, Mahler HR (1980) Mol Gen Genet 177:375–387

    Google Scholar 

  • Clarke ND, Lie DC, Schimmel P (1988) Science 240:521–523

    Google Scholar 

  • Conde J, Fink GR (1976) Proc Natl Acad Sci USA 73:3651–3655

    Google Scholar 

  • De la Salle H, Jacq C, Slonimski PP (1982) Cell 28:721–732

    Google Scholar 

  • Dujardin G, Pajot P, Groudinsky O, Slonimski PP (1980) Mol Gen Genet 179:469–482

    Google Scholar 

  • Dujardin G, Labouesse M, Netter P, Slonimski PP (1983) In: Schweyen RJ, Wolf K, Kaudewitz F (ed). Mitochondria 1983. De Gruyter, Berlin, pp 233–250

    Google Scholar 

  • Eriani G, Delarue M, Poch O, Cangloff J, Moras D (1990) Nature 347:203–206

    Google Scholar 

  • Fersht AR, Shi J-P, Knill-Jones J, Lowe DM, Wilkinson AJ, Blow DM, Brick P, Carter P, Waye MMY, Winter G (1985) Nature 314:235–314

    Google Scholar 

  • Fersht AR, Kill-Jones JW, Bedouelle H, Winter G (1988) Biochemistry 27:1581–1587

    Google Scholar 

  • Gampel A, Cech TR (1991) Genes Develop 5:1870–1880

    Google Scholar 

  • Groudinsky O, Dujardin G, Slonimski PP (1981) Mol Gen Genet 184:493–503

    Google Scholar 

  • Herbert CJ, Labouesse M, Dujardin G, Slonimski PP (1988) EMBO J 7:473–483

    Google Scholar 

  • Herbert CJ, Bécam A-M, Li G-Y, Dujardin G, Slonimski PP (1990) In: Lachowicz TM (ed) Genetics of respiratory enzymes in yeasts. Wroclaw University Press, pp 115–121

  • Hill J, McGraw P, Tzagoloff A (1985) J Biol Chem 260:3235–3238

    Google Scholar 

  • Hountondji C, Blanquet S, Lederer F (1985) Biochemistry 24:1175–1180

    Google Scholar 

  • Hountondji C, Schmitter J-M, Fukui T, Tagaya M, Blanquet S (1990) Biochemistry 29:11266–11273

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Jones MD, Lowe DM, Borgford T, Fersht AR (1986) Biochemistry 25:1887–1891

    Google Scholar 

  • Kittle Jr JD, Mohr G, Gianelos J, Wang H, Lambowitz AM (1991) Genes Develop 5:1009–1021

    Google Scholar 

  • Labouesse M (1990) Mol Gen Genet 224:209–221

    Google Scholar 

  • Labouesse M, Dujardin G, Slonimski PP (1985) Cell 41:133–143

    Google Scholar 

  • Lazowska J, Jacq C, Slonimski PP (1980) Cell 22:333–348

    Google Scholar 

  • Lazowska J, Claisse M, Gargouri A, Kotylak Z, Spyridakis A, Slonimski PP (1989) J Mol Biol 205:275–289

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, New York

    Google Scholar 

  • Myers AM, Pape LK, Tzagoloff A (1985) EMBO J 4:2087–2092

    Google Scholar 

  • Schimmel P (1987) Annu Rev Biochem 56:125–158

    Google Scholar 

  • Séraphin B, Boulet A, Simon M, Faye G (1987) Proc Natl Acad Sci USA 84:6810–6814

    Google Scholar 

  • Taylor JW, Schmidt W, Cosstick R, Okruszeh A, Eckstein F (1985a) Nucleic Acids Res 13:8749–8764

    Google Scholar 

  • Taylor JW, Ott J, Eckstein F (1985b) Nucleic Acids Res 13:8765–8785

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Gy., Herbert, C.J., Labouesse, M. et al. In vitro mutagenesis of the mitochondrial leucyl-tRNA synthetase of S. cerevisiae reveals residues critical for its in vivo activities. Curr Genet 22, 69–74 (1992). https://doi.org/10.1007/BF00351744

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351744

Key words

Navigation