Skip to main content

Structure of the Cochliobolus heterostrophus glyceraldehyde-3-phosphate dehydrogenase gene

Summary

A single gene (GPD1) encoding glyceraldehyde-3-phosphate dehydrogenase (GPD) was found in Cochliobolus heterostrophus. Homology with other fungal GPD-encoding genes was substantial at both the nucleotide and amino-acid levels. Positions of four introns found in GPD1 were conserved in the corresponding Aspergillus nidulans gpdA gene (which is known to have three additional introns absent in GPD1). The size (approximately 1300 nucleotides) of the single GPD1 transcript was consistent with the length (1011 bp) of the open reading frame. Several transcription initiation sites were identified, including major ones 45 and 40 bp upstream of the start codon. Conserved regulatory sequences were found in both the 5′ and 3′ flanding regions of GPD1.

This is a preview of subscription content, access via your institution.

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology, vol 1. John Wiley and Sons, New York

    Google Scholar 

  2. Ballance DJ (1986) Yeast 2:229–236

    Google Scholar 

  3. Barratt RW, Johnson GB, Ogata WN (1965) Genetics 52:233–246

    Google Scholar 

  4. Bennetzen JL, Hall BJ (1982) J Biol Chem 257:3026–3031

    Google Scholar 

  5. Benton WD, Davis RW (1977) Science 196:180–182

    Google Scholar 

  6. Biggin MD, Gilson TJ, Hong GF (1983) Proc Natl Acad Sci USA 80:3963–3965

    Google Scholar 

  7. Birnstiel ML, Busslinger M, Strub K (1985) Cell 41:349–359

    Google Scholar 

  8. Chen W, Struhl K (1985) EMBO J 4:3273–3280

    Google Scholar 

  9. Choi GH, Nuss DL (1990) Nucleic Acids Res 18:5566

    Google Scholar 

  10. Christofori G, Keller W (1988) Cell 54:875–889

    Google Scholar 

  11. Cigan AM, Donahue TF (1987) Gene 59:1–18

    Google Scholar 

  12. Clements JM, Roberts CF (1986) Gene 44:97–105

    Google Scholar 

  13. Dale RMK, McClure BA, Hochins JP (1985) Plasmid 13:31–40

    Google Scholar 

  14. Davies C, Symons RH (1988) Virology 165:216–224

    Google Scholar 

  15. Dayhoff MO (1978) Atlas of protein sequence and structure, vol 5 [Suppl 3]. National Biomedical Research Foundation, Washington D.C., pp 62–63

    Google Scholar 

  16. Dugaiczyk A, Haron JA, Stone EM, Dennison OE, Rothblum KN, Schwartz RJ (1983) Biochemistry 22:1605–1613

    Google Scholar 

  17. Hahn S, Hoar ET, Guarente L (1985) Proc Natl Acad Sci USA 82:8562–8566

    Google Scholar 

  18. Harris JI, Waters M (1976) In: Boyer PD (ed) The enzymes, vol 13c. Academic Press, New York, pp 1–49

    Google Scholar 

  19. Hocking JD, Harris JL (1980) Eur J Biochem 108:567–579

    Google Scholar 

  20. Hocking JD, Harris JL (1980) Eur J Biochem 108:567–579

    Google Scholar 

  21. Holland MJ, Holland JP (1979) J Biol Chem 254:9839–9845

    Google Scholar 

  22. Holland JP, Holland MJ (1980) J Biol Chem 255:2596–2605

    Google Scholar 

  23. Holland JP, Labieniec L, Swimmer C, Holland MJ (1983) J Biol Chem 258:5291–5299

    Google Scholar 

  24. Huang XY, Barrios LAM, Vonkhorporn P, Honda S, Albertson DG, Hecht RM (1989) J Mol Biol 206:411–424

    Google Scholar 

  25. Keller EB, Noon WA (1984) Biochemistry 81:7417–7420

    Google Scholar 

  26. Kimura H, Sumino Y, Suzuki M (1991) J Ferment Bioeng 71:145–150

    Google Scholar 

  27. Kinnaird JH, Fincham JRS (1983) Gene 26:253–260

    Google Scholar 

  28. Kozak M (1986) Cell 44:283–292

    Google Scholar 

  29. Leach J, Lang BR, Yoder OC (1982) J gen Micro 128:1719–1729

    Google Scholar 

  30. Luse DS, Haynes JR, Van Leeuwen D, Schon EA, Clearly ML, Shapiro SG, Lingrel JB, Roeder RG (1981) Nucleic Acids Res 9:4339–4354

    Google Scholar 

  31. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual, Cold Spring Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  32. May GS, Tsang MLS, Smith H, Fidel S, Morris NR (1987) Gene 55:231–243

    Google Scholar 

  33. McAlister L, Holland MJ (1985) J Biol Chem 260:15019–15027

    Google Scholar 

  34. McKnight GL, O'Hara PJ, Parker ML (1986) Cell 46:143–147

    Google Scholar 

  35. McLauchlan J, Gaffney D, Whitton JL, Clements JB (1985) Nucleic Acids Res 13:1347–1368

    Google Scholar 

  36. Messing J (1983) Methods Enzymol 101:20–78

    Google Scholar 

  37. Milner RJ, Brow MD, Cleveland DW, Shinick TM, Sutcliffe JG (1983) Nuclric Acids Res 11:3301–3315

    Google Scholar 

  38. Mullaney EJ, Hamer JE, Roberti KA, Yelton MM, Timberlake WE (1985) Mol Gen Genet 199:37–45

    Google Scholar 

  39. Nagawa F, Fink GR (1985) Proc Natl Acad Sci USA 82:8557–8561

    Google Scholar 

  40. Piechaczyk M, Blanchard JM, Marty L, Dani C, Panabieres F, Fl Sabouty S, Fort P, Jeanteur P (1984) Nucleic Acid Res 12:6951–6962

    Google Scholar 

  41. Proudfoot NJ, Brownlee GG (1976) Nature 263:211–214

    Google Scholar 

  42. Punt PP, Dingemanse MA, Jacobs-Meijsing BJM, Pouwels PH, van den Hodel CAMJJ (1988) Gene 69:49–57

    Google Scholar 

  43. Punt PP, Dingemanse MA, Kuyvenhoven A, Soede RDM, Pouwels PH, van den Hondel CAMJJ (1990) Gene 93:101–109

    Google Scholar 

  44. Queen C, Korn LJ (1984) Nucleic Acid Res 12:581–599

    Google Scholar 

  45. Rezaian MA, Williams RHV, Gordon KHJ, Gould AR, Symons RH (1984a) Eur J Biochem 143:277–284

    Google Scholar 

  46. Rezaian MA, Williams RHV, Symons RH (1984b) Eur J Biochem 150:331–339

    Google Scholar 

  47. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  48. Shih MC, Goodman HM (1988) EMBO J 7:893–898

    Google Scholar 

  49. Smith TL (1989) Proc Natl Acad Sci USA 86:7063–7056

    Google Scholar 

  50. Smith TL, Leong SA (1990) Gene 93:111–117

    Google Scholar 

  51. Stone EM, Rothblum KN, Alevy MC, Kuo TM, Schwartz RJ (1985) Proc Natl Acad Sci USA 82:1628–1632

    Google Scholar 

  52. Sun XH, Tso YY, Lis J, Wu R (1988) Mol Cell Biol 8:5200–5205

    Google Scholar 

  53. Timberlake WE (1986) In: Bailey JA (ed) Biology and molecular biology of plant-pathogen interactions. Springer-Verlag. Berlin, pp 343–358

    Google Scholar 

  54. Tso JY, Sun XH, Kao TH, Reece KS, Wu R (1985a) Nucleic Acids Res 13:2485–2502

    Google Scholar 

  55. Tso JY, Sun XH, Wu R (1985b) J Bio Chem 260:8220–8228

    Google Scholar 

  56. Turgeon BG, MacRae WD, Garber RC, Fink GR, Yoder OC (1986) Gene 42:79–88

    Google Scholar 

  57. Turgeon BG, Garber RC, Yoder OC (1987) Mol Cell Biol 7:3297–3305

    Google Scholar 

  58. Van Wert SL (1990) PhD Dissertation, Cornell University

  59. Walker JE, Wonacott AJ, Harris JI (1980) Eur J Biochem 108:581–586

    Google Scholar 

  60. Ward M, Turner G (1986) Mol Gen Genet 205:331–338

    Google Scholar 

  61. Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

  62. Yarbrough PO, Hayden MA, Dunn LA, Vermersch PS, Klass MR, Hecht RM (1987) Biochim Biophys Acta 908:21–33

    Google Scholar 

  63. Yarbrough PO, Hecht RM (1984) J Biol Chem 259:14711–14720

    Google Scholar 

  64. Yoder OC (1988) In: Sidhu GS (ed) Advances in plant pathology. vol 6. Genetics of pathogenic fungi. Academic Press, London, pp 93–112

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Communicated by H. Bertrand

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van Wert, S.L., Yoder, O.C. Structure of the Cochliobolus heterostrophus glyceraldehyde-3-phosphate dehydrogenase gene. Curr Genet 22, 29–35 (1992). https://doi.org/10.1007/BF00351738

Download citation

Key words

  • Aspergillus nidulans
  • Nucleotide sequence
  • Intron
  • Transcript