Skip to main content
Log in

Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Strict maternal inheritance of mitochondrial (mt) DNA is believed to be the rule in most eukaryotic organisms because of exclusion of paternal mitochondria from the egg cytoplasm during fertilization. In honeybees, polyspermic fertilization occurs, and many spermatozoa, including their mitochondria-rich flagellum, can completely penetrate the egg, thus allowing for a possibly high paternal leakage. In order to identify paternal mtDNA in honeybee eggs, restriction fragment length polymorphisms (RFLP) of different subspecies were used. Total DNA extracts of different developmental stages of an Apis mellifera carnica x Apis mellifera capensis hybrid brood were tested with a radioactively-labelled diagnostic mtDNA probe. Densitograms of autoradiographs indicated that the male contribution represents up to 27% of the total mitochondrial DNA in the fertilized eggs 12 h after oviposition. In subsequent developmental stages the portion of paternal mtDNA slowly decreased until hatching of the larvae when only traces were found. Although rapid disintegration of paternal mtDNA does not occur, the initially high paternal mitochondrial contribution is not maintained in the adult animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam A (1912) Zool Jb Anat Abt 35:1–74

    Google Scholar 

  • Anderson WA (1968) J Ultrastructure Res 24:311–321

    Google Scholar 

  • Balinsky BI (1975) Annu Rev Genet 12:471–512

    Google Scholar 

  • Birky CW Jr, Acton AR, Dietrich R, Carver M (1982) Mitochondrial transmission genetics: replication, recombination, and segregation of mitochondrial DNA and its inheritance in crosses. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 333–348

    Google Scholar 

  • Blochmann F (1889) Morphol Jb 15:85–96

    Google Scholar 

  • Bretschneider LH (1948) L Proc Kon Ned Acad Wetensch 51:616–626

    Google Scholar 

  • Brown JR, Beckenbach AT, Smith MJ (1992) Genetics 132:221–228

    Google Scholar 

  • Chapman RW, Stephens JC, Lansman RA, Avise JC (1982) Genet Res 40:41–57

    Google Scholar 

  • Cornuet J-M, Garnery L, Solignac M (1991) Genetics 128:393–403

    Google Scholar 

  • Counce SJ (1973) The causal analysis of insect embryogenesis. In: Counce SJ, Waddington CH (eds) Developmental systems: Insects, vol. 2. Academic Press, New York, pp 1–156

    Google Scholar 

  • Crozier RH, Crozier YC, Mackinlay AG (1989) Mol Biol Evol 6(4):399–411

    Google Scholar 

  • Davey KG (1965) Reproduction in the insects. Oliver and Boyd, Edinburgh, London

    Google Scholar 

  • Dawid IB (1966) Proc Natl Acad Sci USA 56:269–276

    Google Scholar 

  • Dawid IB, Blackler AW (1972) Dev Biol 29:152–161

    Google Scholar 

  • Drescher W, Rothenbuhler WC (1963) J Hered 54:194–201

    Google Scholar 

  • Friedländer M (1980) Int J Insect Morph Embryol 9:53–57

    Google Scholar 

  • Gyllenstein U, Wharton D, Wilson AC (1985) J Hered 76:321–324

    Google Scholar 

  • Gyllenstein U, Wharton D, Josefsson A, Wilson AC (1991) Nature 352:255–257

    Google Scholar 

  • Hall HG, Muralidharan K (1989) Nature 339:211–213

    Google Scholar 

  • Hamilton HH (1952) Lillie's Development of the chick. Holt, New York

    Google Scholar 

  • Hennig W (1988) Spermatogenesis in Drosophila. In: Malacinski GM (ed) Developmental genetics of higher organisms. Macmillan, New York, pp 239–274

    Google Scholar 

  • Hilderth PE, Lucchesi JC (1963) Fertilization in Drosophila. Dev Biol 6:262–278

    Google Scholar 

  • Hoeh WR, Blakley KH, Brown WM (1991) Science 251:1488–1490

    Google Scholar 

  • Kawano S, Takano H, Mori K, Kuroiwa T (1991) Protoplasma 160:167–169

    Google Scholar 

  • Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI (1990) Genetics 126:657–663

    Google Scholar 

  • Kondo R, Matsuura ET, Chigusa SI (1992) Genet Res 59:81–84

    Google Scholar 

  • Laidlaw HH, Tucker KW (1964) Genetics 50:1439–1442

    Google Scholar 

  • Lansman RA, Avise JC, Huettel MD (1983) Proc Natl Acad Sci USA 80:1969–1971

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Meland S, Johansen S, Johansen T, Haugli K, Haugli F (1991) Curr Genet 19:55–60

    Google Scholar 

  • Meusel MS, Moritz RFA (1992) Apidologie 23:147–150

    Google Scholar 

  • Moritz RFA, Meusel MS (1989) Proc 32nd Int Cong Apimondia, Rio de Janeiro

  • Moritz RFA, Hawkins CF, Crozier RH, Mackinlay AG (1985) Experientia 42:322–324

    Google Scholar 

  • Nachtsheim H (1914) Arch Zellforsch 2:169–241

    Google Scholar 

  • Neale DB, Marshall KA, Sederoff RR (1989) Proc Natl Acad Sci USA 86:9347–9349

    Google Scholar 

  • Petrunkewitsch A (1901) Zool Jb 14:573–608

    Google Scholar 

  • Piko L, Matsumoto L (1976) Dev Biol 49:1–10

    Google Scholar 

  • Richards AG, Miller A (1937) J New York Ent Soc 45:1–60

    Google Scholar 

  • Rothenbuhler WC (1957) J Hered 48:160–168

    Google Scholar 

  • Rothenbuhler WC, Gowen JW, Park OW, (1952) Science 115:637–638

    Google Scholar 

  • Rothschild L (1956) Fertilization. Methuen and Co. Ltd, London

    Google Scholar 

  • Satta Y, Toyohara N, Ohtaka C, Tatsuno Y, Watanabe TK, Matsuura ET, Chigusa SI, Takahata N (1988) Genet Res 52:1–6

    Google Scholar 

  • Sheppard WS, Rinderer TE, Mazzoli JA, Stelzer JA, Shimanuki H (1991) Nature 349:782–784

    Google Scholar 

  • Smith DR (1988) Mitochondrial DNA polymorphisms in five Old World subspecies of honey bees and in New World hybrids. In: Needham GR, Page RE, Delfinado-Baker M, Bowman CE (eds) Africanized honey bees and bee mites. Ellis Horwood, Chichester, pp 303–312

    Google Scholar 

  • Smith DR, Brown WM (1988) Experientia 44:257–260

    Google Scholar 

  • Smith DR, Taylor OR, Brown WM (1989) Nature 339:213–215

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Stordeur E de, Solignac M, Monnerot M, Mounolou JC (1990) Mol Gen Genet 220:127–132

    Google Scholar 

  • Takahata N, Maruyama T (1981) Genet Res 37:291–302

    Google Scholar 

  • Takahata N, Palumbi SR (1985) Genetics 109:441–457

    Google Scholar 

  • Vlasak I, Burgschwaiger S, Kreil G (1987) Nucleic Acids Res 15:2388

    Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllenstein UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Biol J Linn Soc 26:375–400

    Google Scholar 

  • Zouros E, Freeman KR, Oberhauser Ball A, Pogson GH (1992) Nature 359:412–414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. W. Birky Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meusel, M.S., Moritz, R.F.A. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs. Curr Genet 24, 539–543 (1993). https://doi.org/10.1007/BF00351719

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351719

Key words

Navigation