Skip to main content
Log in

Senescence-specific mitochondrial DNA molecules in P. anserina: evidence for transcription and normal processing of the RNA

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In Podospora anserina the phenomenon of senescence was previously shown to be correlated with the presence of senescence-specific circular DNAs (senDNAs), resulting from the amplification of distinct regions (α, β, γ and ε) of the mitochondrial chromosome. The β region gives rise to senDNAs with variable sizes, but sharing a 1-kb common sequence. Here, we present a molecular analysis of five β senDNAs. We have determined the nucleotide sequence around the circularization site of each senDNA monomer. In two cases, the presence of a tRNA gene, very close to the 3′ end of the monomer, has been observed. This suggests that some β senDNAs could be generated via a reverse transcription step. We have furthermore shown that the β sen DNAs produce specific transcripts which undergo normal processing of their introns. We propose that a transcription start site, located in the β common region, is involved in mitochondrial replication allowing the amplification of the β senDNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akins RA, Kelley RL, Lambowitz AM (1986) Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell 47: 505–516

    Google Scholar 

  • Baldacci G, Bernardi G (1982) Replication origins are associated with transcription initiation sequences in the mitochondrial genome of yeast. EMBO J 8:987–994

    Google Scholar 

  • Belcour L, Vierny C (1986) Variable DNA splicing sites of a mitochondrial intron: relationship to the senescence process in Podospora. EMBO J 5:609–614

    Google Scholar 

  • Belcour L, Begel O, Mossé MO, Vierny C (1981) Mitochondrial DNA amplification in senescent cultures of Podospora anserina: variability between the retained, amplified sequences. Curr Genet 3:13–21

    Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Google Scholar 

  • Chen JY, Martin N (1988) Biosynthesis of tRNA in yeast mitochondria. J Biol Chem 263:13677–13682

    Google Scholar 

  • Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18:6927–6933

    Google Scholar 

  • Cummings DJ, Belcour L, Grandchamp C (1979) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 171:239–250

    Google Scholar 

  • Cummings DJ, MacNeil IA, Domenico I, Matsuura ET (1985) Excision-amplification of mitochondrial DNA during senescence in Podospora anserina. DNA sequence analysis of three unique plasmids. J Mol Biol 185:659–680

    Google Scholar 

  • Cummings DJ, Michel F, McNally KL (1989) DNA Sequence analysis of the 24.5-kilobase pair cytochrome oxidase subunit I mitochondrial gene from Podospora anserina: a gene with sixteen introns. Curr Genet 3:151–156

    Google Scholar 

  • Herbert CJ, Labouesse M, Dujardin G, Slonimski PP (1988) The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing. EMBO J 7:473–483

    Google Scholar 

  • Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletion of muscle mitochondrial DNA in patiens with mitochondrial myopathies. Nature 331:717–719

    Google Scholar 

  • Jamet-Vierny C, Begel O, Belcour L (1980) Senescence in Podospora anserina: amplification of a mitochondrial DNA sequence. Cell 21:189–194

    Google Scholar 

  • Jamet-Vierny C, Begel O, Belcour L (1984) A 20×103-base mosaic gene identified on the mitochondrial chromosome of Podospora anserina. Eur J Biochem 143:389–394

    Google Scholar 

  • Kennell JC, Lambowitz AM (1989) Development of an in-vitro transcription system for Neurospora crassa mitochondrial DNA and identification of transcription initiation sites. Mol Cell Biol 9: 3603–3613

    Google Scholar 

  • Koll F (1989) Senescence et recombinaison mitochondriale chez le champignon filamenteux Podospora anserina. PhD thesis, University of Paris XI

  • Koll F, Belcour L, Vierny C (1985) A 1 100-bp sequence of mitochondrial DNA is involved in the senescence process in Podospora: study of senescent and mutant cultures. Plasmid 14:106–117

    Google Scholar 

  • Koll F, Begel O, Belcour L (1987) Insertion of short poly d(A) d(T) sequences at recombination junctions in mitochondrial DNA of Podospora. Mol Gen Genet 209:630–632

    Google Scholar 

  • Kubelik AR, Kennell JC, Akins RA, Lambowitz AM (1990) Identification of Neurospora mitochondrial promoters and analysis of synthesis of the mitochondrial small rRNA in wild-type and the promoter mutant poky. J Biol Chem 265:4515–4526

    Google Scholar 

  • Küpper H, Sekiya T, Rosenberg M, Egan J, Landy A (1978) A r-dependent termination site in the gene coding for tyrosine tRNA su3 of Escherichia coli. Nature 272:423–428

    Google Scholar 

  • Lecellier G, Silar P (1993) Rapid methods for nucleic-acid extraction from Petri dish-grown mycelia. Curr Genet 21 (in press)

  • Marcou D (1961) Notion de longévité et nature cytoplasmique du déterminant de sénescence chez quelques champignons. Ann Sci Natur Bot 11:653–764

    Google Scholar 

  • Marcou D, Schecroun J (1959) La sénescence chez Podospora anserina pourrait être due à des particules cytoplasmiques infectantes. C R Acad Sci (Paris) 248:280–283

    Google Scholar 

  • Osinga KA, De Haan M, Christianson T, Tabak HF (1982) A non-anucleotide sequence involved in promotion of ribosomal RNA synthesis and RNA priming of DNA replication in yeast mitochondria. Nucleic Acids Res 10:7993–7006

    Google Scholar 

  • Osinga KA, De Vries E, Van der Horst GTJ, Tabak HF (1984) Processing of yeast mitochondrial messenger RNAs at a conserved dodecamer sequence. Nucleic Acids Res 12:889–900

    Google Scholar 

  • Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8:299–305

    Google Scholar 

  • Rizet G (1953) Sur l'impossibilité d'obtenir la multiplication végétative interrompue et illimitée de l'ascomycète Podospora anserina. C R Acad Sci (Paris) 237:838–840

    Google Scholar 

  • Sainsard-Chanet A, Begel O, Belcour L (1993) DNA delection of mitochondrial introns is correlated with the process of senescence in Podospora anserina. J Mol Biol 234:1–7

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schmidt U, Kosack M, Stahl U (1987) Lariat RNA of a group-II intron in a filamentous fungus. Curr Genet 12:291–295

    Google Scholar 

  • Sellem CH, Sainsard-Chanet A, Belcour L (1990) Detection of a protein encoded by a class-II mitochondrial intron of Podospora anserina. Mol Gen Genet 224:232–240

    Google Scholar 

  • Sellem C, Lecellier G, Belcour L (1993) Transposition of a group-II intron. Nature 366:176–178

    Google Scholar 

  • Smith JR, Rubenstein I (1973) The development of senescence in Podospora anserina. J Gen Microbiol 76:283–296

    Google Scholar 

  • Stahl U, Lemke A, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid-like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162:341–343

    Google Scholar 

  • Turker MS, Domenico JM, Cummings DJ (1987) Excision-amplification of mitochondrial DNA during senescence in Podospora anserina. A potential role for an 11-base-pair consensus sequence in the excision process. J Mol Biol 198:171–185

    Google Scholar 

  • Varmus H (1983) Retroviruses. Science 240:1427–1435

    Google Scholar 

  • Vierny-Jamet C (1988) Senescence in Podospora anserina: a possible role for nucleic-acid-interacting proteins suggested by the sequence analysis of a mitochondrial DNA region specifically amplified in senescent cultures. Gene 74:387–398

    Google Scholar 

  • Wong TW, Clayton DA (1985) In-vitro replication of human mitochondrial DNA: accurate initiation at the origin of light-strand synthesis. Cell 42:951–958

    Google Scholar 

  • Wright RM, Cummings DJ (1983) Transcription of a mitochondrial plasmid during senescence in Podospora anserina. Curr Genet 7:457–464

    Google Scholar 

  • Wright RM, Horrum MA, Cummings DJ (1982) Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina? Cell 29:505–515

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamet-Vierny, C., Shechter, E. Senescence-specific mitochondrial DNA molecules in P. anserina: evidence for transcription and normal processing of the RNA. Curr Genet 25, 538–544 (1994). https://doi.org/10.1007/BF00351675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351675

Key words

Navigation