Skip to main content
Log in

Compressive strength of coated rigid-rod polymer fibres

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One limitation to the use of high-strength/high-modulus rigid-rod polymer fibres like poly-(p-phenylene benzobisthiazole) (PBZT) and poly-(p-phenylene benzobisoxazole) (PBZO) in composite structures is their low compressive strength. Various theories have been developed to predict compressive strength of rigid-rod fibres. In this study the critical buckling stress for rigid-rod fibres with stiff external coatings has been theoretically modelled assuming that the failure mode in compression is the microbuckling of the fibrils in shear. Our model predicts that significant improvement in fibre compressive strength will occur only when relatively thick coatings, with thickness to diameter (t/D) ratios in excess of > 0.05, are used. Experimentally measured compressive strength of aluminium coated PBZT fibres shows values in good agreement to the theory at t/D ratios of 0.006 and below. Factors related to the selection of suitable coating materials and problems associated with establishing coating performance are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P :

axial compressive load

P f :

axial compressive load on the fibre

P c :

axial compressive load on the coating

P icr :

critical buckling load in the ith case

σcr :

critical buckling stress

σco :

compressive strength of the uncoated fibre

σc :

compressive strength of the coated fibre

v(x):

lateral deflection of a buckled fibril or coating

V m :

amplitude of the lateral deflection in the mth mode

m :

number of half-sine waves in the deflection mode

x :

coordinate distance along axial direction

y :

coordinate distance along radial direction

θ:

coordinate distance along circumferential direction

l :

length of the buckling unit

N :

number of fibrils in the fibre

D :

fibre diameter

d :

fibril diameter

t :

coating thickness

I f :

moment of inertia of the fibril

A f :

cross-sectional area of the fibril

E f :

tensile modulus of the fibre

E c :

tensile modulus of the coating material

E :

tensile modulus of the coated fibre

G :

torsional shear modulus of the fibre

vc :

Poisson's ratio of the coating material

ρf :

density of the fibre

ρc :

density of the coating material

ρ:

density of the coated fibre

ΔU f :

strain-energy change in the fibre

ΔU c :

strain-energy change in the coating

ΔT f :

external work done on the fibre

ΔT c :

external work done on the coating

ξ:

d/D

η:

t/D

References

  1. W. W. Adams and R. K. Eby, MRS Bull. XII(8) (1987) 22.

    Article  Google Scholar 

  2. S. J. Deteresa, R. S. Porter and R. J. Farris, J. Mater. Sci. 20 (1985) 1645.

    Article  CAS  Google Scholar 

  3. D. C. Martin and E. L. Thomas, ibid. 26 (1991) 5171.

    Article  CAS  Google Scholar 

  4. H. H. Chuah, T. T. Tsai, K. H. Wei, C. S. Wang and F. E. Arnold, in “ACS PMSE Proceedings” Vol. 60, edited by W. W. Adams and R. K. Eby (American Chemical Society, Washington, DC, 1989) p. 517.

    Google Scholar 

  5. C. Y-C. Lee and U. Santhosh, Air-Force Technical Report, WRDC-TR-90-4023 (1990).

  6. T. D. Dang, L. S. Tan, K. H. Wei, H. H. Chuah and F. E. Arnold, in “ACS PMSE Proceeedings”, Vol. 60, edited by W. W. Adams and R. K. Eby (American Chemical Society, Washington, DC, 1989) p. 424.

    Google Scholar 

  7. R. F. Kovar, R. Haghighat and R. W. Lusignea, in “MRS Symposium Proceedings”, Vol. 134 (Materials Research Society, Pittsburgh, PA, 1989) p. 389.

    Google Scholar 

  8. C. Y-C. Lee and U. Santhosh, Polym. Eng. Sci. (1991), submitted.

  9. S. J. Deteresa, R. S. Porter and R. J. Farris, J. Mater. Sci. 23 (1988) 1886.

    Article  CAS  Google Scholar 

  10. K. E. Newman, P. Zhang, L. J. Cuddy and D. L. Allara, J. Mater. Res. 6(7) (1991) 1580.

    Article  CAS  Google Scholar 

  11. S. P. Timoshenko and J. M. Gere, “Theory of Elastic Stability”, 2nd Edn (McGraw-Hill, New York, 1961) Ch. 11.

    Google Scholar 

  12. P. Seide, J. Aero. Sci. 29 (1962) 851.

    Article  Google Scholar 

  13. F. J. McGarry and J. E. Moalli, Polymer 32 (1991) 1811.

    Article  CAS  Google Scholar 

  14. S. R. Allen, J. Mater. Sci. 22 (1987) 853.

    Article  CAS  Google Scholar 

  15. K. E. Newman, PhD thesis, Pennsylvania State University (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santhosh, U., Newman, K.E. & Lee, C.Y.C. Compressive strength of coated rigid-rod polymer fibres. JOURNAL OF MATERIALS SCIENCE 30, 1894–1901 (1995). https://doi.org/10.1007/BF00351628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351628

Keywords

Navigation