Journal of Materials Science

, Volume 30, Issue 21, pp 5356–5370 | Cite as

The effects of ion implantation on the friction behaviour of sapphire

  • S. J. Bull
  • T. F. Page


The friction behaviour of ion-implanted sapphire in contact with diamond cones and spheres of a range of materials has been investigated as a function of implantation dose and implant species. Generally, an increase in friction is observed at low doses followed by a decrease once amorphization takes place. For the sharp diamond cones this can be correlated with changes in ploughing behaviour controlled by near-surface plasticity, whereas, for the spheres, the increase in friction for low-dose implants is due to changes in adhesion between the spheres and the implanted layer. The implications of these observations for the creation of lubricating surface layers by high-dose ion implantation are discussed.


Polymer Surface Layer Sapphire Material Processing Friction Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Buckley, “Surface effects in friction, wear and lubrication” (Elsevier, Amsterdam, 1981).Google Scholar
  2. 2.
    F. P. Bowden and D. Tabor, “The friction and lubrication of solids Part I” (Clarendon Press, Oxford, 1958).Google Scholar
  3. 3.
    E. Rabinowicz, “Friction and wear of materials” (Wiley, New York, 1965).Google Scholar
  4. 4.
    N. P. Suh, “Tribophysics” (Prentice-Hall, Englewood Cliffs, NJ, 1986).Google Scholar
  5. 5.
    G. Dearnaley, Thin Solid Films 107 (1983) 315.CrossRefGoogle Scholar
  6. 6.
    I. Singer, Mater. Res. Soc. Symp. Proc. 27 (1984) 585.CrossRefGoogle Scholar
  7. 7.
    S. G. Roberts and T. F. Page, in “Ion implantation into metals,” edited by V. Ashworth, W. A. Grant and R. P. M. Proctor (Pergamon, Oxford, 1982) pp. 135.CrossRefGoogle Scholar
  8. 8.
    P. J. Burnett and T. F. Page, J. Mater. Sci. 19 (1984) 845.CrossRefGoogle Scholar
  9. 9.
    Idem, ibid. 19 (1984) 3524.CrossRefGoogle Scholar
  10. 10.
    Idem, Rad. Eff. 97 (1986) 123.Google Scholar
  11. 11.
    C. J. McHargue, Int. Met. Rev. 31 (1986) 49.CrossRefGoogle Scholar
  12. 12.
    H. Naramoto, C. W. White, J. M. Williams, C. J. McHargue, O. W. Holland, M. M. Abraham and B. R. Appleton, J. Appl. Phys. 54 (1983) 683.CrossRefGoogle Scholar
  13. 13.
    J. K. Cochran, L. O. Legg and H. F. Solnick-Legg, Mater. Res. Soc. Symp. Proc. 24 (1984) 173.CrossRefGoogle Scholar
  14. 14.
    T. Hioki, A. Itoh, S. Noda, H. Doi, J. Kawamoto and O. Kamigaito, J. Mater. Sci. 21 (1986) 1321.CrossRefGoogle Scholar
  15. 15.
    C. S. Yust and C. J. McHargue, Mater. Res. Soc. Symp. Proc. 17 (1982) 533.Google Scholar
  16. 16.
    C. J. McHargue, G. M. Begun, J. M. Williams, C. W. White, B. R. Appleton, P. S. Sklad and P. Angelini, Nucl. Instrum. Meth. B16 (1986) 212.CrossRefGoogle Scholar
  17. 17.
    S. J. Bull and T. F. Page, J. Mater. Sci. 23 (1988) 4217.CrossRefGoogle Scholar
  18. 18.
    N. E. W. Hartley, Wear 34 (1975) 427.CrossRefGoogle Scholar
  19. 19.
    Idem, Thin Solid Films 64 (1979) 177.CrossRefGoogle Scholar
  20. 20.
    Idem, Mater. Res. Soc. Symp. Proc. 7 (1982) 295.CrossRefGoogle Scholar
  21. 21.
    P. J. Burnett and T. F. Page, Wear 114 (1987) 85.CrossRefGoogle Scholar
  22. 22.
    N. P. Suh and H. C. Sin, ibid. 69 (1981) 91.CrossRefGoogle Scholar
  23. 23.
    M. V. Swain, Proc. R. Soc. Lond. A366 (1979) 575.CrossRefGoogle Scholar
  24. 24.
    B. R. Lawn and M. V. Swain, J. Mater. Sci. 10 (1975) 113.CrossRefGoogle Scholar
  25. 25.
    B. R. Lawn and R. Wilshaw, ibid. 10 (1975) 1049.CrossRefGoogle Scholar
  26. 26.
    B. R. Lawn and A. L. Evans, ibid. 12 (1977) 2195.CrossRefGoogle Scholar
  27. 27.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc. 64 (1981) 533.CrossRefGoogle Scholar
  28. 28.
    J. M. Challen and P. L. B. Oxley, Wear 53 (1979) 229.CrossRefGoogle Scholar
  29. 29.
    C. A. Brookes, Philos Mag. A43 (1981) 529.CrossRefGoogle Scholar
  30. 30.
    J. Goddard and H. Willman, Wear 5 (1965) 114.CrossRefGoogle Scholar
  31. 31.
    D. M. Marsh, Proc. Roy. Soc., A279 (1964) 420.Google Scholar
  32. 32.
    R. Hill, “Theory of plasticity” (Oxford University Press, Oxford, 1950).Google Scholar
  33. 33.
    S. J. Bull and T. F. Page, Nucl. Instrum Meth. B32 (1988) 91.CrossRefGoogle Scholar
  34. 34.
    D. H. Buckley, in “Surfaces and interfaces in glass and ceramics, materials science research 7”, edited by V. D. Frechette, W. C. La Course and V. L. Burdick (Plenum Press, New York, 1974) pp. 101–26.CrossRefGoogle Scholar
  35. 35.
    T. E. Fischer and H. Tomizawa, Wear 105 (1985) 29.CrossRefGoogle Scholar
  36. 36.
    A. R. C. Westwood, J. S. Ahearn and J. J. Mills, Coll. Surf. 2 (1981) 1.CrossRefGoogle Scholar
  37. 37.
    S. J. Bull and T. F. Page, J. Phys. D Appl. Phys. 22 (1989) 941.CrossRefGoogle Scholar
  38. 38.
    P. J. Burnett and G. A. D. Briggs, J. Mater. Sci. 21 (1986) 1828.CrossRefGoogle Scholar
  39. 39.
    D. H. Buckley, Mater. Res. Soc. Symp. Proc. 40 (1985) 359.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. J. Bull
    • 1
  • T. F. Page
    • 2
  1. 1.Harwell LaboratoryAEA TechnologyDidcotUK
  2. 2.Department of Metallurgy and Engineering MaterialsThe UniversityNewcastle-upon-TyneUK

Personalised recommendations