Skip to main content
Log in

Assignment of RFLP, RAPD and isoenzyme markers to Aspergillus nidulans chromosomes, using chromosome-substituted segregants of a hybrid of A. nidulans and A. quadrilineatus

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Chromosome-substituted haploid segregants were selected from among the benomyl-induced progeny of an interspecific hybrid produced by polyethylene-glycol-induced fusion of protoplasts of an Aspergillus nidulans ‘master strain’ and an A. quadrilineatus auxotrophic mutant. These segregants were examined by RFLP, RAPD, and isoenzyme analysis. The A. nidulans ribosomal repeat unit was assigned to chromosome V, while the benA and the pyrG genes were assigned to linkage groups VIII and I, respectively, of A. nidulans. None of the other cloned genes tested (gdhA, amdS and 25s rRNA) showed polymorphism between the two parents. The method was also used to assign RAPD markers and isoenzyme bands of β-arylesterase, phosphatases, NAD-dependent malate dehydrogenase, and cellulase, to A. nidulans chromosomes and/or to their A. quadrilineatus equivalents. The isoenzyme and DNA sequences assigned to chromosomes could be used to saturate the genetic map of A. nidulans, or could serve as starting points for the construction of a genetic map of A. quadrilineatus. No method affording the same possibilities has been described so far in Aspergilli. This chromosome-assay method may be a useful alternative to pulsed-field-gel electrophoretic procedures for the assignment of molecular markers to chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anné J, Peberdy JF (1981) Trans Br Mycol Soc 77:401–408

    Google Scholar 

  • Armi HS, McCullough W, Roberts CF (1976) J Gen Microbiol 92: 263–282

    Google Scholar 

  • Beauchamp C, Fridovich J (1971) Anal Biochem 44:276–287

    Google Scholar 

  • Borsuk PA, Nagiec MN, Stepien PP, Bartnik E (1982) Gene 17: 147–152

    Google Scholar 

  • Brewer GJ (1970) An introduction to isoenzyme techniques. Academic Press, New York

    Google Scholar 

  • Brody H, Carbon J (1989) Proc Natl Acad Sci USA 86:6260–6263

    Google Scholar 

  • Brody H, Griffith J, Cuticchia AJ, Arnold J, Timberlake WE (1991) Nucleic Acids Res 19:3105–3109

    Google Scholar 

  • Brown TL, Yet M-G, Wold F (1982) Anal Biochem 122:164–172

    Google Scholar 

  • Caddick MX, Arst HNJr (1986) Genet Res 47:83–91

    Google Scholar 

  • Caddick MX, Brownlee AG, Arst HNJr (1986) Genet Res 47:93–102

    Google Scholar 

  • Carle GF, Olson MV (1984) Nucleic Acids Res 12:5647–5664

    Google Scholar 

  • Clare BG, Flentje NT, Atkinson MR (1968) Aust J Biol Sci 21: 275–295

    Google Scholar 

  • Clutterbuck AJ (1987) In: O'Brien SJ (ed) Genetic maps 4. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 325–337

    Google Scholar 

  • Croft JH, Dales RBG (1983) In: Potrykus I, Harms CT, Hinnen A, Hütter R, King PJ, Shillito RD (eds) Protoplasts 1983. Proc 6th Int Protoplast Symposium, Birkhäuser Verlag, Basel, pp 179–186

    Google Scholar 

  • Elliott CG (1960) Genet Res 1:462–476

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Anal Biochem 132:6–13

    Google Scholar 

  • Goren R, Huberman M (1976) Anal Biochem 75:1–8

    Google Scholar 

  • Gurr SJ, Hawkins AR, Drainas C, Kinghorn JR (1986) Curr Genet 10:761–766

    Google Scholar 

  • Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. Elsevier North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Hastie AC (1970) Nature 226:771

    Google Scholar 

  • Howlett BJ (1989) Exp Mycol 13:199–202

    Google Scholar 

  • Hu J, Quiros CF (1991) Plant Cell Rep 10:505–511

    Google Scholar 

  • Hynes MJ, Corrick CM, King JA (1983) Mol Cell Biol 3:1430–1439

    Google Scholar 

  • Jaton-Ogay K, Suter M, Crameri R, Falchetto R, Fatih A, Monod M (1992) FEMS Microbiol Lett 92:163–168

    Google Scholar 

  • Käfer E (1958) Adv Genet 9:105–145

    Google Scholar 

  • Kálmán ÉT, Varga J, Kevei F (1991) Can J Microbiol 37:391–396

    Google Scholar 

  • Leach J, Finkelstein DB, Rambosek JA (1986) Fungal Genet Newslett 33:32–33

    Google Scholar 

  • Lockington RA, Taylor GG, Winther M, Scazzocchio C, Davies RW (1982) Gene 20:135–137

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • May GS, Gambino J, Weatherbee JA, Morris NR (1985) J Cell Biol 101:712–719

    Google Scholar 

  • McCullough W, Roberts CF (1974) FEBS Lett 41:238–242

    Google Scholar 

  • Michelmore RW, Hulbert SH (1987) Annu Rev Phytopathol 25: 383–404

    Google Scholar 

  • Oakley BR, Rinehart JE, Mitchell BL, Oakley E, Carmona C, Gray GL, May GS (1987) Gene 61:385–399

    Google Scholar 

  • Orbach MJ, Vollrath D, Davis RW, Yanofsky C (1988) Mol Cell Biol 8:1469–1473

    Google Scholar 

  • Osman KE (1987) PhD thesis, University of Birmingham, Birmingham, UK

  • Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ (1953) Adv Genet 5:141–238

    Google Scholar 

  • Schwartz DC, Cantor CR (1984) Cell 37:67–75

    Google Scholar 

  • Skatrud PL, Queener SW (1989) Gene 78:331–338

    Google Scholar 

  • Upshall A, Giddings B, Mortimore ID (1977) J Gen Microbiol 100: 413–418

    Google Scholar 

  • Varga J, Croft JH (1990) In: 4th Int Mycol Congress, Regensburg, Abstracts 216

  • Waters MD, Stack HF, Mavournin KH, Dellarco VL (1986) Mutat Res 167:171–188

    Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) Nucleic Acids Res 18:6531–6535

    Google Scholar 

  • Wilson CW (1969) Anal Biochem 31:506–511

    Google Scholar 

  • Woodbury W, Spencer AK, Stanmann MA (1971) Anal Biochem 44: 301–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Esser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, J., Croft, J.H. Assignment of RFLP, RAPD and isoenzyme markers to Aspergillus nidulans chromosomes, using chromosome-substituted segregants of a hybrid of A. nidulans and A. quadrilineatus . Curr Genet 25, 311–317 (1994). https://doi.org/10.1007/BF00351483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351483

Key words

Navigation