Skip to main content
Log in

Drying of silica gels with supercritical carbon dioxide

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Results of drying experiments of aerogels with supercritical carbon dioxide are reported. In addition to the results of experiments with a pilot extracting apparatus, a preliminary design is also given of a large-scale supercritical carbon dioxide extraction plant to be used for drying of aerogels. From the experiments it was found that crack-free aerogels could be obtained when drying with carbon dioxide under supercritical conditions. The lowest temperature and pressure at which crack-free aerogel samples were obtained was at 35 °C and 85 bar, respectively. The temperature had a minor influence on the drying time. It was also found that the diffusion of ethanol into the aerogel pores limits the drying time. This limitation implies that the thickness of the aerogel tiles will have a large influence on the cost of drying of an aerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fricke (ed.), “Aerogels”, Proceedings of the 1st International Symposium on Aerogels, Springer Proceedings in Physics, Vol. 6 (Springer, Berlin, 1985).

    Google Scholar 

  2. R. J. Ayen and P. A. Iacobucci, Rev. Chem. Eng. 5 (1988) 1.

    Article  Google Scholar 

  3. Idem, ibid. 5 (1988) 157.

    Article  CAS  Google Scholar 

  4. R. Vacher, J. Phalippou, J. Pelous and T. Woigner (eds), “Proceedings of 2nd International Symposium on Aerogels”, Montpellier, Rev. Phys. Appl. Coll. C4 suppl. 4 (1989).

  5. W. J. Schmidt, R. A. Grieger-Block and T.W. Chapman, in “Chemical Engineering at Supercritical Fluid Conditions”, edited by M. E. Paulaitis, J.M.L. Penninger, R. D. Gray Jr. and P. Davidson (Ann Arbor Science, Ann Arbor, MI, 1983) pp. 445–60.

    Google Scholar 

  6. J. G. Vanlierop, A. Huizing, W. C. P. Meerman and C. A. M. Mulder, J. Non-Cryst. Solids 82 (1986) 265.

    Article  CAS  Google Scholar 

  7. B. Rangarajan and C. T. Lira, J. Supercrit. Fluids 4 (1991) 1.

    Article  CAS  Google Scholar 

  8. P. H. Tewari, A. J. Hunt and K. D. Lofftus, in “Aerogels”, Proceedings of the 1st International Symposium on Aerogels, edited by J. Fricke, Springer Proceedings in Physics, Vol. 6 (Springer, Berlin, 1985) p. 31.

    Google Scholar 

  9. Idem, J. Mater. Lett. 3 (1985) 363.

    Article  CAS  Google Scholar 

  10. F. Graser and A. Stange, Eur. Pat. DEO171722.

  11. C. J. Brinker, K. J. Ward, K. D. Keefer, E. Holupka and P. J. Bray, in “Aerogels”, Proceedings of the 1st International Symposium on Aerogels, edited by J. Fricke, Springer Proceedings in Physics, Vol. 6 (Springer, Berlin, 1985) p. 57.

    Google Scholar 

  12. A. H. Boonstra and T. N. M. Bernards, J. Non-Cryst. Solids 105 (1988) 207.

    Article  CAS  Google Scholar 

  13. G. Scherer, ibid. 100 (1989) 72.

    Google Scholar 

  14. C. A. M. Mulder and J. G. Van Lierop, in “Aerogels”, Proceedings of the 1st International Symposium on Aerogels, edited by J. Fricke, Springer Proceedings in Physics, Vol. 6 (Springer, Berlin, 1985) p. 68.

    Google Scholar 

  15. E. Papanikolau, W.C.P.M. Meerman, R. Aerts, T.L. Van Rooy, J.G. Van Lierop and T.P.M. Meeuwsen, J. Non-Cryst. Solids 100 (1988) 247.

    Article  CAS  Google Scholar 

  16. R. C. Reis, J. M. Prausnitz, B. E. Poling, in “The Properties of Gases and Liquids”, 4th edition (McGraw-Hill, New York, 1987).

    Google Scholar 

  17. K. Nagahama, J. Suzuki, T. Suzuki, in “Proceedings of the International Symposium on Supercritical Fluids”, edited by M. Perutz (Nice, 1988) pp. 143–50.

  18. D. W. Rousseau, in “Handbook of Separation Process Technology” (Wiley, New York, 1987) p. 83.

    Google Scholar 

  19. A. A. Pesaran and A. F. Mills, Int. J. Heat Mass Transfer 30 (1987) 1037.

    Article  CAS  Google Scholar 

  20. Idem, ibid. 30 (1987) 1051.

    Article  CAS  Google Scholar 

  21. A. H. Boonstra and J. M. E. Baken, J. Non-Cryst. Solids 109 (1989) 1.

    Article  CAS  Google Scholar 

  22. M. McHugh and V. Krukonis, “Supercritical Fluid Extraction” (Butterworths, Stoneham, 1986) p. 130.

    Google Scholar 

  23. W. J. Beek and K. M. K. Muttzal, “Transport Phenomena” (Wiley, New York, 1975) p. 156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Bommel, M.J., de Haan, A.B. Drying of silica gels with supercritical carbon dioxide. JOURNAL OF MATERIALS SCIENCE 29, 943–948 (1994). https://doi.org/10.1007/BF00351414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351414

Keywords

Navigation