Skip to main content
Log in

A review of residual stresses and tensioning in circular saws

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

The origin and measurement of residual stresses and their effect on the transverse stability of circular saws are discussed, with emphasis placed on nondestructive stress analyses, their limits of application, and their possible adaptation to the measurement of residual stresses in circular saws. Saw stability variations can be computed once the stress distribution is known. Evaluation of the X-ray diffraction technique and the ultrasonic and magnetic methods were considered for this purpose.

Alternatively, saw stability can be related to resonance and bending stiffness measurements in specific modes. However, the state of stress cannot be inferred from these tests. For saw stability prediction, measurement of the state of stress is more essential than are direct stiffness measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuku, S., Cullity, B. D. 1971. A magnetic method for the determination of residual stress. Experimental Mechanics 11 (5):217–223.

    Google Scholar 

  • Bagchi, D. K., Cullity, B. D. 1967. Effects of applied and residual stress on the magnetoresistance of nickel. J. Appl. Physics 38 (3):999–1000.

    Google Scholar 

  • Baldwin, W. M. 1949. Residual stresses in metals. Proceeding, American Society for Testing Materials 49:539–583.

    Google Scholar 

  • Barret, C. S., Massalski, T. V. 1966. Structure of metals. McGraw-Hill Book Co., New York, 466–484.

    Google Scholar 

  • Barz, E. 1953. Untersuchungen an Kreissägen für Holz, Fehler-und Spannungsprüfverfahren. Forschungsbericht Nr. 51 des Wirtschafts-und Verkehrsministeriums Nordrhein-Westfalen. Köln und Opladen: Westdeutscher Verlag.

    Google Scholar 

  • Barz, E. 1957. Fertigungsverfahren und Spannungsverlauf bei Kreissägeblättern für Holz. Forschungsberichte des Wirtschafts- und Verkehrsministeriums Nordrhein-Westfalen Nr. 360. Köln und Opladen: Westdeutscher Verlag.

    Google Scholar 

  • Barz, E., Berger, A. 1960. Holzbereitungswerkzeuge. Mitteilungen der Deutschen Gesellschaft für Holzforschung. Heft Nr. 45. Stuttgart DGfH.

  • Barz, E. 1960. Prüfgeräte für den Richt-und Spannungszustand von Kreissägeblättern. Holz Roh-Werkstoff 18 (1): 19–25.

    Google Scholar 

  • Barz, E. 1962. Der Spannungszustand von Kreissägeblättern und seine Auswirkungen auf das Arbeitsverhalten. Holz Roh-Werkstoff 20 (10): 393–397.

    Google Scholar 

  • Barz, E. 1963. Vergleichende Untersuchungen über das Spannen von Kreissägeblättern mit Maschinen und mit Richthammern. Holz Roh-Werkstoff 21 (4): 135–144.

    Google Scholar 

  • Barz, E. 1965 Zur Frage der Eigenspannungen in scheiben- und bandförmigen Werkzeugen. I. Mitteilung: Zerstörungsfreie Ermittlung von Eigenspannungen bei scheiben-und bandförmigen Trennwerkzeugen. Holz Roh-Werkstoff 23 (10): 412–419.

    Google Scholar 

  • Barz, E., Münz, U. 1968. Prüfung und Beurteilung des Richt-und Spannungszustandes bei Kreissägeblättern für die Holzbearbeitung. Holz Roh-Werkstoff 26 (5): 170–175.

    Google Scholar 

  • Benson, R. W. 1968. Development of nondestructive methods for determining residual stresses and fatigue damage in metals. Contract No. NAS8-20208. Propulsion and Vehicle Engineering Laboratory, George C. Marshall Space Flight Center, Huntsville, Alabama.

    Google Scholar 

  • Berolzheimer, C., Best, C. 1959. Thin circular saw blades. Forest Prod. J. 9 (11): 404–412.

    Google Scholar 

  • Bolstadt, D. A., Davis, R. A., Quist, W. E., Roberts, E. C. 1963. Measuring stress in steel parts by X-ray diffraction. Metal Progress, 88–92.

  • Bolstadt, D. A., Quist, W. E. 1965. The use of a portable X-ray unit for measuring residual stresses in aluminum, titanium and steel alloys. Advances in X-ray Analysis 8: 26–37.

    Google Scholar 

  • Christenson, A. L. (ed.) 1960. Measurement of stress by X-ray. Society of Automotive Engineers Technical Report No. 182, SAE, Inc., New York.

    Google Scholar 

  • Clotfelter, W. N. 1972. Marshall Space Flight Center, Huntsville, Alabama. Personal communication.

  • Cullity, B. D. 1967. Element of X-ray diffraction. Addison-Wesley Reading, Mass., 431–451.

    Google Scholar 

  • Denton, A. A. 1966. Determination of residual stresses. Metallurgical Rev. 11 (101): 1–23.

    Google Scholar 

  • Dugdale, D. S. 1963a. Effect of internal stress on elastic stiffness. J. Mech. Phys. Sci. 11: 41–47

    Google Scholar 

  • Dugdale, D. S. 1963b. Effect of internal stress on the flexural stiffness of dises. Int. J. Engineering Sci. 1: 89–100.

    Google Scholar 

  • Dugdale, D. S. 1963c. Measurement of internal stress in dises. Int. J. Engineering Sci. 1: 383–389.

    Google Scholar 

  • Dugdale, D. S. 1964. Indentation of strips with flat dies on a flat anvil. Int. J. Production Res. 3 (2): 141–151.

    Google Scholar 

  • Dugdale, D. S. 1965. Flexure tests for revealing internal stress in discs. Int. J. Engineering Sci. 3: 1–8.

    Google Scholar 

  • Dugdale, D. S. 1966a. Theory of cireular saw tensioning. Int. J. Production Res. 4 237–248.

    Google Scholar 

  • Dugdale, D. S. 1966b. Stiffness of a spinning dise clamped at its centre. J. Mech. Phys. Solids 14: 349–356.

    Google Scholar 

  • Dugdale, D. S. 1968. Flexure of thin plates containing internal stress. Int. J. Engineering Sci. 6: 239–249.

    Google Scholar 

  • Frick, R. P., Gurtman, G. A., Meriwether, H. D. 1967. Experimental determination of residual stresses in an orthotropic material. J. of Materials 2 (4): 719–748.

    Google Scholar 

  • Friebe, E. 1970. Steifheit und Schwingungsverhalten von Kreissägeblättern. Holz Roh-Werkstoff 28 (10): 349–357.

    Google Scholar 

  • Firestone, F. A., Frederick, J. R. 1946. Refinements in supersonic reflectoscopy polarized sound. J. of the Acoustical Soc. of America. 18 (1): 200–211.

    Google Scholar 

  • Gause, R. L. 1967. Ultrasonic analysis of cold-rolled aluminum. Nondestructive testing: Trends and techniques. Proceedings of the Second Technology Status and Trends Symposium, NASA SP-5082: 31–42.

  • Greaves, R. W., Kirstowsky, E. C., Lipson, C. 1945. Residual stress study. Proceedings, Society for Experimental Stress Analysis 2 (2): 44–58.

    Google Scholar 

  • Hanslip, R. E. 1952. Residual stress in surface-hardened oil field pump rods. Proceedings, Society for Experimental Stress Analysis 10 (1): 97–112.

    Google Scholar 

  • Heyn, E. 1914. Internal strains in cold wrought metals and some troubles caused thereby. J. of the Institute of Metals 12: 1–37.

    Google Scholar 

  • Hiendelhofer, K. 1951. Evaluation of residual stresses. McGraw-Hill, Inc. New York.

    Google Scholar 

  • Khasdan, S. M. 1956. Tensioning of cireular saws. Derev. Prom. 5 (9): 15–17.

    Google Scholar 

  • Macherauch, E. 1966. X-ray stress analysis. Experimental Mechanics 6: 140–153.

    Google Scholar 

  • Mack, D. R. 1962. Measurement of residual stresses in disks from turbine-rotor forgings. Proceedings, Society for Experimental Stress Analysis 19 (1): 155–158.

    Google Scholar 

  • McKannan, E. C. 1967. Ultrasonic measurement of stress in aluminum. Nondestructive testing: Trends and techniques. Proceedings of the Second Technology Status and Trends Symposium NASA SP-5082: 43–54.

  • Meins, W. 1963. Geräuschuntersuchungen an Kreissägeblättern für die Holzbearbeitung. Dissertation. T. H. Braunschweig.

  • Mote, C. D., Jr. 1963. Effect of inplane stresses on the vibration characteristics of clampedfree dises. Ph. D. Dissertation, Univ. of Calif., Berkeley.

    Google Scholar 

  • Mote, C. D., Jr. 1964. Circular saw stability. Forest Prod. J. 14 (6): 244–250.

    Google Scholar 

  • Mote, C. D., Jr. 1965. Free vibration of initially stressed circular disks. Trans. ASME 87 (B): 258–264.

    Google Scholar 

  • Mote, C. D., Jr. 1967. Natural frequencies in annuli with induced thermal membrane stresses. Trans. ASME 89 (B): 611–618.

    Google Scholar 

  • Mote, C. D., Jr. 1970a. Stability of cireular plates subjected to moving loads. Journal of the Franklin Inst. 290 (4): 329–344.

    Google Scholar 

  • Mote, C. D., Jr. 1970b. Discrete element models for the stres and vibration analysis of plates. University of California Forest Products Laboratory, Service Report No. 35.01.77.

  • Mote, C. D., Jr., Nieh, L. T. 1971. Control of circular dise stability with membrane stresses. Experimental Mechanics 11 (11): 290–298.

    Google Scholar 

  • Neff, H. 1960. Röntgenographische Spannungsmessungen an gehärteten Stählen. Sonderdruck aus ‚'ATM”, Lieferung 298.

  • Nisida, M., Hond, M., Hasunuma, T. 1956. Studies of plastic deformation by the photo-plastic method. Proceedings, Sixth Japanese National Congress of Applied Mechanics, 137–140.

  • Nye, J. F. 1947. Discussion on the measurement of internal stresses. Symposium on Internal Stresses in Metals and Alloys. Institute of Metals, London, 382.

    Google Scholar 

  • Orowan, E. 1948. Classification and nomenclature of internal stresses. Symposium on Internal Stresses in Metals and Alloys. Institute of Metals, London, 47–59.

    Google Scholar 

  • Pahlitzsch, G., Rowinski, B. 1966a. Über das Schwingungsverhalten von Kreissägeblättern, Erste Mitteilung: Bestimmung und Auswirkung der geometrischen Form und des Vorspannungszustandes. Holz Roh-Werkstoff 24 (4): 125–134.

    Google Scholar 

  • Pahlitzsch, G., Rowinski, B. 1966b. Zweite Mitteilung: Ermittlung und Auswirkungen der kritischen Drehzahlen und Eigenfrequenzen der Sägeblätter. Holz Roh-Werkstoff 24 (8): 341–346.

    Google Scholar 

  • Palermo, P. M. 1963. An evaluation of the hole-relaxation method of determining residual stresses. Report 1742, David Taylor Model Basin, Washington 7, D. C.

    Google Scholar 

  • Prokeš, S. 1972. Comparison of methods for measuring tension of saw disks. Drevo. 27 (7): 181–183.

    Google Scholar 

  • Rembowski, J. L. 1958. Theory for the calculation of the tangential residual stress distribution in eurved beams. Proceedings, Society for Experimental Stress Analysis 16 (1): 195–198.

    Google Scholar 

  • Richards, D. G. 1945. A study of certain mechanically-induced residual stresses. Proceedings, Society for Experimental Stress Analysis 3 (1): 40–61.

    Google Scholar 

  • Riney, T. D. 1957. Photoelastic determination of the residual stress in the dome of electron tube envelopes. Proceedings, Society for Experimental Stress Analysis 15 (1): 161–170.

    Google Scholar 

  • Riparbelli, C. 1950. A method for the determination of initial stresses. Proceedings, Society for Experimental Stress Analysis 8 (1): 173–196.

    Google Scholar 

  • Rollins, F. R. 1959. Study of methods for nondestructive measurement of residual stresses, Technical Report 59-561, Wright Air Development Division, Wright-Patterson Air Force Base, Dayton, Ohio.

    Google Scholar 

  • Rollns, F. R. 1961. Ultrasonic methods for nondestructive measurement of residual stresses, Technical Report 61-42, Part I, Wright Air Development Division, Wright-Patterson Air Force Base, Dayton, Ohio.

    Google Scholar 

  • Rollins, F. R., Kobett, D. R., Jones, J. L. 1963. Study of ultrasonic methods for nondestructive measurement of residual stress, Technical Report 61-42, Part II, Wright Air Development Division, Wright-Patterson Air Force Base, Dayton, Ohio.

    Google Scholar 

  • Rollwitz, W. L. 1969. Magnetoabsorption techniques for measuring material properties. Part II. Measurement of residual and applied stress. Technical Report 66-76, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio.

    Google Scholar 

  • Rollwitz, W. L. 1972. Southwest Research Institute, San Antonio, Texas. Personal communication.

  • Sachs, G. 1940. Practical metallurgy, Amer. Soc. Metals, Cleveland, Ohio.

    Google Scholar 

  • Sachs, G., Espey, G. 1941. The measurement of residual stresses in metals. Iron Age. September 18, 63–71; September 25, 36–42.

    Google Scholar 

  • Schaal, A. 1955. Industrielle Anwendungsmöglichkeiten der röntgenographischen Spannungsmessung. Archiv für das Eisenhüttenwesen. 26 (8): 445–447.

    Google Scholar 

  • Stakhiev, Yu, M. 1965. Rolling machine for circular saws. Derev. Prom. 14 (2): 28.

    Google Scholar 

  • Sugihara, H. 1952. Some problems of circular saw blades, especially on tensioning. Wood Res. Inst. Kyoto University, 4: 1–32.

    Google Scholar 

  • Szymani, R. 1972a. Residual stresses and tensioning of cireular saws for wood. University of California Forest Products Laboratory, Service Report No. 35.01.94, Progress Report No. 1.

  • Szymani, R. 1972b. Evaluation of X-ray technique for residual stress analysis in circular saws. University of California Forest Products Laboratory. Technical Report No. 35.01.94, Progress Report No. 2.

  • Szymani, R. 1973. Potential of ultrasonie methods for residual stress analysis in cireular saws. University of California Forest Products Laboratory. Technical Report No. 35.01.94, Progress Report No. 3.

  • Taylor, A. 1961. X-ray metallography. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Tokareik, A. G., Polzin, M. H. 1952. Quantitative evaluation of residual stresses by the stresscoat drilling technique. Proceedings, Society for Experimental Stress Analysis 9 (2): 195–207.

    Google Scholar 

  • Treuting, R. G., Lynch, J. J., Wishart, H. B., Richards, D. G. 1952. Residual Stress Measurements. Amer. Soc. Metals, Cleveland, Ohio.

    Google Scholar 

  • Tverdynina, M. M. 1966. Tensioning control of the circular saws by the deflection of saw rim. Derev. Prom. 15 (3): 12–14.

    Google Scholar 

  • Yakunin, Ya, K., Khasdan, S. M. 1957. Stability and vibration of circular saw dises during operation. Derev. Prom. 6 (8): 11–14, 6 (9): 14–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors would like to express their gratitude to Professor R. M. Bragg, Department of Material Science and Engineering, U. C. Berkeley, and to Dr. R. L. Gause and Mr. W. N. Clotfelter, Marshall Space Flight Center, Huntsville, Alabama, for valuable suggestions and permission to use X-ray and ultrasonic equipment. The authors are also grateful for the financial support of the project from the University of California Forest Products Laboratory; the California Cedar Products Company, Stockton; the California Saw, Knife and Grinding Company, San Francisco; Sun Studs, Roseburg, Oregon; Weyerhaeuser Company, Tacoma, Washington; and McIntire-Stennis Funds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szymani, R., Mote, C.D. A review of residual stresses and tensioning in circular saws. Wood Science and Technology 8, 148–161 (1974). https://doi.org/10.1007/BF00351369

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351369

Keywords

Navigation