Journal of Materials Science

, Volume 29, Issue 7, pp 1930–1934 | Cite as

A compositional and structural study of the phase BaZr1−xCuxO3−z

  • A. Marshall
  • T. C. Shields
  • J. S. Abell


Ceramics of the nominal composition BaZr1−xCuxO3−z were made by reacting powders of BaCuO2 and BaZrO3. Scanning electron microscopy-energy dispersive X-ray analysis and X-ray diffraction analyses were performed on all samples to obtain compositional and structural information. The BaZrO3 structure was found to exist over a wide range of compositions, indicating that copper substitutes on both barium and zirconium sites. Two different substitution regimes are suggested. The results are discussed with regard to the possible usage of BaZr1−xCuxO3−z compounds as barrier layers on alumina substrates or crucibles during melt processing or crystal growth of superconducting YBa2Cu3O7x(YBCO).


Copper Zirconium Barium Crystal Growth Diffraction Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. N. Dem'yanets, Sov. Phys. Usp. 34 (1991) 36.CrossRefGoogle Scholar
  2. 2.
    A. Bailey, G. J. Russell and K. N. R. Taylor, in “HTSC Thick Films: Their Synthesis, Structure, Properties and Applications, Studies of High Temperature Superconductors”, Vol 8, edited by A. Narlikar (Nova, New York, 1991).Google Scholar
  3. 3.
    A. Marshall, T. J. Gray, F. Wellhöfer and J. S. Abell, Phys. C 210 (1993) 518.CrossRefGoogle Scholar
  4. 4.
    F. Wellhöfer, T. C. Shields, J. S. Abell and K. N. R. Taylor, Mater. Res. Symp. Proc. 169 (1990) 2524.Google Scholar
  5. 5.
    T. J. Gray, F. Wellhöfer, T. C. Shields and J. S. Abell, J. Alloys Compounds 195 (1993) 101.CrossRefGoogle Scholar
  6. 6.
    Y. J. Bi, F. Wellhöfer, M. J. Day and J. S. Abell, Mater. Sci. Eng. B21 (1993) 19.CrossRefGoogle Scholar
  7. 7.
    H. J. Scheel, W. Sadowski and L. Schellenberg, Supercond. Sci. Technol. 2 (1989) 17.CrossRefGoogle Scholar
  8. 8.
    C. T. Cheung and E. Ruckenstein, J. Mater. Res. 4 (1989) 813.CrossRefGoogle Scholar
  9. 9.
    E. F. Paulus, G. Miehe. H. Fuess. I. Yehia and U. Löchner, J. Solid State Chem. 90 (1991) 17.CrossRefGoogle Scholar
  10. 10.
    Joint Committee on Powder Diffraction Standards JCPDS 381402 BaCuO2.Google Scholar
  11. 11.
    Joint Committee on Powder Diffraction Standards JCPDS 60399 BaZrO3.Google Scholar
  12. 12.
    N. Grammatika, D. S. McLachlan and N. Sonnenberg, Supercond. Sci. Technol. 6 (1993) 469.CrossRefGoogle Scholar
  13. 13.
    H. S. Potdar, S. B. Deshpande, P. D. Godbole and S. K. Date, J. Mater. Res. 8 (1993) 948.CrossRefGoogle Scholar
  14. 14.
    J. Talvacchio and G. R. Wagner, Supercond. Appl. Infrared Microwave Dev. 1292 (1990) 1.Google Scholar
  15. 15.
    T. C. Shields and J. S. Abell, Supercond. Sci. Technol. 5 (1992) 627.CrossRefGoogle Scholar
  16. 16.
    A. Bailey, K. Sealey, T. Puzzer, K. N. R. Taylor, Mater. Sci. Eng. B 12 (1992) 237.CrossRefGoogle Scholar
  17. 17.
    M. V. S. Lakshmi, K. Ramkumar and M. Stayam, J. Mater. Sci. 26 (1991) 4094.CrossRefGoogle Scholar
  18. 18.
    T. C. Shields, J. S. Abell, A. Hui and A. Smeets, Phys. C 213 (1993) 338.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Marshall
    • 1
  • T. C. Shields
    • 1
  • J. S. Abell
    • 1
  1. 1.School of Metallurgy and MaterialsUniversity of BirminghamEdgbastonUK

Personalised recommendations