Skip to main content

Advertisement

Log in

Autoantibody to the nucleosome subunit (H2A-H2B)-DNA is an early and ubiquitous feature of lupus-like conditions

  • Autoantibodies as Clinical Markers
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chromatin, a huge polymer of nucleosomes, has been implicated as an important target of autoantibodies in idiopathic and drug-induced lupus for decades, but the antigenicity of chromatin has only recently been dissected. IgG reactivity with the (H2A-H2B)-DNA complex, a subunit of the nucleosome, is present in the majority of patients with systemic lupus erythematosus, in >90% of patients with lupus induced by procainamide and in individual patients with lupus induced by a variety of other drugs, but is not seen in people taking these medications who are clinically asymptomatic. Anti-[(H2A-H2B)-DNA] accounted for the bulk of the anti-chromatin activity in drug-induced lupus. The earliest detectable autoantibody in lupus-prone mice recognized similar epitopes in the (H2A-H2B)-DNA subnucleosome complex; as the immune response progressed, native DNA and other constituents of chromatin became antigenic. The importance of chromatin-reactive T cells in the anti-[(H2A-H2B)-DNA] response is suggested by the presence of somatic mutations in antibody VH and VL regions, their perdominant IgG isotype and the similarity in kinetics of their production to that of conventional T cell dependent antigens. Together with the serologic data from human lupus-like disease, these results are consistent with chromatin being a common stimulant for both B and T cells. While chromatin-reactive antibodies are closely associated with systemic disease and have recently been implicated in glomerulonephritis in SLE, the absence of renal disease in drug-induced lupus indicates that additional abnormalities are required to manifest the serious pathogenic potential of anti-[(H2A-H2B)-DNA] antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC:

antigen present cells

DIL:

drug-induced lupus

ELISA:

enzyme-linked immunosorbent assay

GBM:

glomerular basement membrane

[(H2A-H2B)-DNA]:

an intermolecular complex consisting of DNA and a dimer of histones H2A and H2B

nDNA:

native (double-stranded) DNA

SLE:

systemic lupus erythematosus

References

  1. Hargraves MM, Richmond H & Morton R (1948) Proc. Staff Mtg. Mayo Clinic 23: 25–28

    Google Scholar 

  2. Holman H & Deicher HR (1959) J. Clin. Invest. 38: 2059–2072

    Google Scholar 

  3. Friou GJ (1958) J. Immunol. 80: 476–481

    Google Scholar 

  4. Kunkel HG, Holman HR & Deicher HRG (1960) Ciba Foundation Symposium on Cellular Aspects of Immunity (pp 429–437) Ciba, Basel.

    Google Scholar 

  5. Stollar BD (1969) J. Immunol. 103: 804–808

    Google Scholar 

  6. Tan EM, Robinson J & Robitaille P (1976) Scand. J. Immunol. 5: 811–818

    Google Scholar 

  7. Fritzler MJ & Tan EM (1978) J. Clin. Invest. 62: 560–567

    Google Scholar 

  8. McGhee JD & Felsenfeld G (1980) Annu. Rev. Biochem. 49: 1115–1156

    Google Scholar 

  9. Rekvig OP & Hannestad K (1980) J. Exp. Med. 152: 1720–1733

    Google Scholar 

  10. Rubin RL, Joslin FG & Tan EM (1982) Arthritis Rheum. 25: 779–782

    Google Scholar 

  11. Arents G, Burlingame RW, Wang B-C, Love WE & Moudrianakis EN (1991) Proc. Natl. Acad. Sci. USA 88: 10148–10152

    Google Scholar 

  12. Arents G & Moudrianakis EN (1993) Proc. Natl. Acad. Sci. USA 90: 10489–10493

    Google Scholar 

  13. Struck MM, Klug A & Richmond TJ (1992) J. Mol. Biol. 224: 253–264

    Google Scholar 

  14. Pederson DS, Thoma F & Simpson RT (1986) Annu. Rev. Cell Biol. 2: 117–147

    Google Scholar 

  15. Wyllie AH, Kerr JFR & Currie AR (1980) Int. Rev. Cytol. 68: 251–306

    Google Scholar 

  16. Robitaille P & Tan EM (1973) J. Clin. Invest. 52: 316–323

    Google Scholar 

  17. Karsh J, Halpert SP, Anken M, Klima E & Steinberg AD (1982) Int. Arch. Allergy Appl. Immunol. 68: 60–69

    Google Scholar 

  18. Burlingame RW, Boey ML, Starkebaum G & Rubin RL (1994) J. Clin. Invest. 94: 184–192

    Google Scholar 

  19. Chabre H, Amoura Z, Piette J-C, Godeau P, Bach J-F & Koutouzov S (1995) Arthritis Rheum. 38: 1485–1491

    Google Scholar 

  20. Lefkowith JB, Kiehl M, Rubenstein J, DiValerio R, Bernstein K, Kahl L, Rubin RL & Gourley M (1996) J. Clin. Invest. 98: 1373–1380

    Google Scholar 

  21. Burlingame RW, Rubin RL, Balderas RS & Theofilopoulos AN (1993) J. Clin. Invest. 91: 1687–1696

    Google Scholar 

  22. Amoura Z, Chabre H, Koutouzov S, Lotton C, Cabrespines A, Bach J & Jacob L (1994) Arthritis Rheum. 37(11): 1684–1688

    Google Scholar 

  23. Losman MJ, Fasy TM, Novick KE & Monestier M (1992) J. Immunol. 148: 15

    Google Scholar 

  24. Losman MJ, Fasy TM, Novick KE & Monestier M (1993) Int. Immunol. 5: 513–523

    Google Scholar 

  25. Mohan C, Adams S, Stanik V & Datta SK (1993). J. Exp. Med. 177: 1367–1381

    Google Scholar 

  26. Duncan SR, Rubin RL, Burlingame RW, Sinclair SB, Pekny KW & Theofilopoulos AN (1996) Clin. Immunol. Immunopath. 79: 171–181

    Google Scholar 

  27. Gleichmann E, Pals ST, Rolink AG, Radaskiewicz T & Gleichmann H (1984) Immunol. Today 5: 324–332

    Google Scholar 

  28. Pollard KM, Chan EKL, Rubin RL & Tan EM (1987) Clin. Immunol. Immunopathol. 44: 31–40

    Google Scholar 

  29. Rubin RL, Tang F Tsay G & Pollard KM (1990) Clin. Immunol. Immunopathol. 54: 320–332

    Google Scholar 

  30. Goodnow CC, Crosbie J, Jorgensen H, Brink RA & Basten A (1989) Nature 342: 385–391

    Google Scholar 

  31. Burlingame RW & Rubin RL (1991) J. Clin. Invest. 88: 680–690

    Google Scholar 

  32. Mongey A-B, Donovan-Brand R, Thomas TJ, Adams LE & Hess EV (1992) Arthritis Rheum. 35: 219–223

    Google Scholar 

  33. Rubin RL, Burlingame RW, Arnott JE, Totoritis MC, McNally EM & Johnson AD (1995) J. Immunol. 154: 2483–2493

    Google Scholar 

  34. Rubin RL, Bell SA & Burlingame RW (1992) J. Clin. Invest. 90: 165–173

    Google Scholar 

  35. Vázquez-Del Mercado M, Casiano CA & Rubin RL (1995) Autoimmunity 20: 105–111

    Google Scholar 

  36. Matzinger P (1994) Annu. Rev. Immunol. 12: 991–1045

    Google Scholar 

  37. Jardetzky TS, Lane WS, Robinson RA & Wiley DC (1991) Nature 353: 326–329

    Google Scholar 

  38. Tan EM, Schur PH, Carr RI & Kunkel HG (1966) J. Clin. Invest. 45: 1732–1740

    Google Scholar 

  39. Tan EM, Chan EKL, Sullivan KF & Rubin RL (1988) Clin. Immunol. Immunopathol. 47: 121–141

    Google Scholar 

  40. Lefkowith JB & Gilkeson GS (1996) Arthritis Rheum. 39: 894–903

    Google Scholar 

  41. Kono DH, Burlingame RW, Owens DG, Kuramochi A, Balderas RS, Balomenos D & Theofilopoulos AN (1994) Proc. Natl. Acad. Sci. USA 91: 10160–10172

    Google Scholar 

  42. Kramers C, Hylkema MN, vanBruggen MCJ, van deLagemaat R, Dijkman HBP, Assmann KJM, Smeenk RJT & Berden JHM (1994) J. Clin. Invest. 94: 568–577

    Google Scholar 

  43. DiValerio R, Bernstein KA, Varghese E & Lefkowith JB (1995) J. Immunol. 155: 2258–2268

    Google Scholar 

  44. Bernstein KA, DiValerio R & Lefkowith JB (1995) J. Immunol. 154: 2424–2433

    Google Scholar 

  45. Rumore PM & Steinman CR (1990). J. Clin. Invest. 86: 69–74

    Google Scholar 

  46. Budhai L, Oh K & Davidson A (1996) J. Clin. Invest. 98: 1585–1593

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burlingame, R.W., Rubin, R.L. Autoantibody to the nucleosome subunit (H2A-H2B)-DNA is an early and ubiquitous feature of lupus-like conditions. Molecular Biology Reports 23, 159–166 (1996). https://doi.org/10.1007/BF00351164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351164

Key words

Navigation