Skip to main content
Log in

A high-resolution linkage map of the lethal spotting locus: a mouse model for Hirschsprung disease

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Mice homozygous for the lethal spotting (ls) mutation exhibit aganglionic megacolon and a white spotted coat owing to a lack of neural crest-derived enteric ganglia and melanocytes. The ls mutation disrupts the migration, differentiation, or survival of these neural crest lineages during mammalian development. A human congenital disorder, Hirschsprung disease (HSCR), is also characterized by aganglionic megacolon of the distal bowel and can be accompanied by hypopigmentation of the skin. HSCR has been attrrbuted to multiple loci acting independently or in combination. The ls mouse serves as one animal model for HSCR, and the ls gene may represent one of the loci responsible for some cases of HSCR in humans. This study uses 753 N2 progeny from a combination of three intersubspecific backcrosses to define the molecular genetic linkage map of the ls region and to provide resources necessary for positional cloning. Similar to some cases of HSCR, the ls mutation acts semidominantly, its phenotypic effects dependent upon the presence of modifier genes segregating in the crosses. We have now localized the ls mutation to a 0.8-cM region between the D2Mit113 and D2Mit73/D2Mit174 loci. Three genes, endothelin-3 (Edn3), guanine nucleotide-binding protein α-stimulating polypeptide 1 (Gnas), and phosphoenolpyruvate carboxykinase (Pck1) were assessed as candidates for the ls mutation. Only Edn3 and Gnas did not recombine with the ls mutation. Mutational analysis of the Edn3 and Gnas genes will determine whether either gene is responsible for the neural crest deficiencies observed in ls/ls mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, C., Malas, S., Pilz, A., Pate, L., Ali, R., Peters, J. (1994). Linkage mapping around the ragged (Ra) and wasted (wst) loci on distal mouse chromosome 2. Genomics 20, 94–98.

    Google Scholar 

  • Beechey, C.V. (1989). Linkage studies with T(2:14)48H. Mouse News Lett. 84, 85–86.

    Google Scholar 

  • Beechey, C.V., Peters, J., Ball, S.T., (1992). Mapping studies of distal chromosome 2 including the imprinting region. Mouse Genome 90, 423–424.

    Google Scholar 

  • Bronner-Fraser, M. (1993). Mechanisms of neural crest cell migration. Bioessays 15, 221–230.

    Google Scholar 

  • Cole, G.W., Barr, R.J. (1987). Hypomelanosis associated with a colonic abnormality: a possible result of defective development of the neural crest. Am. J. Dermatopathol. 9, 45–50.

    Google Scholar 

  • Dietrich, W., Katz, H., Lincoln, S.E., Shin, H., Friedman, J., Dracopoli, N.C. Lander, E.S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447.

    Google Scholar 

  • Dietrich, W., Miller, J., Katz, H., Joyce, D., Steen, R., Lincoln, S., Daly, M., Reeve, M., Weaver, A., Anagnostopoulos, P., Goodman, N., Dracopoli, N., Lander, E. (1993). Genetic Maps, S.J. O'Brien, ed. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press), pp. 4.110–4.142.

    Google Scholar 

  • Dunn, L.C., Charles, D.R. (1937). Studies on spotting patterns 1. Analysis of quantitative variations in the pied spotting of the mouse. Genetics 22, 14–42.

    Google Scholar 

  • Edery, P., Lyonnet, S., Mulligan, L.M., Pelet, A., Dow, E., Abel, L., Holder, S., Nihoul-Fekete, C., Ponder, B.A.J., Munnich, A. (1994). Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature 367, 378–380.

    Google Scholar 

  • Green, M.C. (1981). Gene mapping. In The Mouse in Biomedical Research I, H.L. Foster, J.D. Small, J.G. Fox, eds. (New York: Academic Press), pp. 105–117.

    Google Scholar 

  • Green, M.C. (1989). Catalog of mutant genes and polymorphic loci. In Genetic Variants and Strains of the Laboratory Mouse, M.F. Lyon, A.G. Searle, eds. (Oxford: Oxford University Press), pp. 12–403.

    Google Scholar 

  • Hirschsprung, H. (1888). Stuhltragheit Neugeborener in Folge von Dilatation und Hypertrophie des Colons. Jahrb. Kinderheilk 27, 1–7.

    Google Scholar 

  • Hussussian, C.J., Struewing, J.P., Goldstein A.M., Higgins, P.A., Ally, D.S., Sheahan, M.D., Clark, W.H., Tucker, M.A., Dracopoli, N.C. (1994). Germline p16 mutations in familial melanoma. Nature Genet. 8, 15–21.

    Google Scholar 

  • Jacobs-Cohen, R.J., Payette, R.F., Gershon, M.D., Rothman, T.P. (1987). Inability of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice: requirement for a permissive microenvironment. J. Comp. Neurol. 255, 425–438.

    Google Scholar 

  • Kapur, R.P., Yost, C., Palmiter, R.D. (1992). A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development 116, 167–176.

    Google Scholar 

  • Kapur, R.P., Yost, C., Palmiter, R.D. (1993). Aggregation chimeras demonstrate that the primary defect responsible for aganglionic megacolon in lethal spotted mice is not neuroblast autonomous. Development 117, 993–999.

    Google Scholar 

  • Kissel, P., Andre, J.M., Jacquier, A. (1981). The Neurocristopathies. (New York: Masson Publishing USA, Inc.).

    Google Scholar 

  • Lander, E.S., Schork, N.J. (1994). Genetic dissection of complex traits. Science 265, 2037–2054.

    Google Scholar 

  • Lane, P.W. (1966). Association of megacolon with two recessive spotting genes in the mouse. J. Hered. 57, 29–31.

    Google Scholar 

  • Lane, P.W. (1982). Dominant megacolon (Dom). Mouse News Lett. 66, 66.

    Google Scholar 

  • Lane, P.W., Liu, H.M. (1984). Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J. Hered. 75, 435–439.

    Google Scholar 

  • Levesque, H., Moore, N., Cailleux, N., Richard, V., Thuillez, C., Courtoius, H. (1994). Endothelins: a potential target for pharmacological intervention in diseases of elderly. Drugs Aging 4, 221–237.

    Google Scholar 

  • Liddell, R.A., Thibaudeau, G., Maddison, P., Goldstein, C., McHugh, K.M., Siracusa, L.D., Pavan, W.J. (1994). Molecular genetic mapping of the lethal spotting (ls) mutation in the mouse. Mouse Genome 92, in press.

  • Liu, J., Hanson, R.W. (1991). Regulation of phosphoenolpyruvate carboxykinase (GTP) gene transcription. Mol. Cell. Biochem. 104, 89–100.

    Google Scholar 

  • Ma, Q., Alder, H., Nelson, K.K., Chatterjee, D., Gu, Y., Nakamura, T., Canaani, E., Croce, C.M., Siracusa, L.D., Buchberg, A.M. (1993). Analysis of the murine All-1 gene reveals conserved domains with human ALL-1 and identifies a motif shared with DNA methyltransferases. Proc. Natl. Acad. Sci. USA 90, 6350–6354.

    Google Scholar 

  • Malas, S., Peters, J., Abbott, C. (1994). The genes for endothelin 3, vitamin D 24-hydroxylase, and melanocortin 3 receptor map to distal mouse Chromosome 2, in the region of conserved synteny with human Chromosome 20. Mamm. Genome 5, 577–579.

    Google Scholar 

  • Mayer, T.C. (1965). The development of piebald spotting in mice. Dev. Biol. 11, 319–334.

    Google Scholar 

  • Mayer, T.C., Maltby, E.L. (1964). An experimental investigation of pattern development in lethal spotting and belted mouse embryos. Dev. Biol. 9, 269–286.

    Google Scholar 

  • Meier-Ruge, W. (1974). Hirschsprung disease: its aetiology, pathogenesis, and differential diagnosis. Curr. Top. Pathol. 79, 131–179.

    Google Scholar 

  • Passarge, E. (1980). Genetics of common gastrointestinal malformations and the heterogeneity of Hirschsprung's disease. In The Genetics and Heterogeneity of Common Gastrointestinal Disorders, J.I. Rotter, I.M. Samloff, D.L. Rimoin, eds. (New York: Academic Press), pp. 441–449.

    Google Scholar 

  • Pavan, W.J., Tilghman, S.M. (1994). Piebald lethal (s 1) acts early to disrupt the development of neural crest-derived melanocytes. Proc. Natl. Acad. Sci. USA 91, 7159–7163.

    Google Scholar 

  • Payette, R.F., Tennyson, V.M., Pomeranz, H.D., Pham, T.D., Rothman, T.P., Gershon, M.D. (1988). Accumlation of components of basal laminae: association with the failure of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice. Dev. Biol. 125, 341–360.

    Google Scholar 

  • Phillips, R.J.S. (1966). New linkages: lethal-spotting. Mouse News Lett. 34, 27.

    Google Scholar 

  • Puffenberger, E.G., Kauffman, E.R., Bolk, S., Matise, T.C., Washington, S.S.. Angrist, M., Weissenbach, J., Garver, K.L., Mascari, M., Ladda, R., Slaugenhaupt, S.A., Chakravarti, A. (1994). Identify-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum. Mol. Genet. 3, 1217–1225.

    Google Scholar 

  • Romeo, G., McKusick, V.A., (1994). Phenotypic diversity, allelic series and modifier genes. Nature Genet 7, 451–453.

    Google Scholar 

  • Romeo, G., Ronchetto, P., Luo, Y., Barone, V. Seri, M., Ceccherini, L., Pasini, B., Bocciardi, R., Lerone, M., Kaarianen, H., Martucciello, G. (1994). Point mutations affecting the tyrosine kinase domain if the RET proto-oncogene in Hirschsprung's disease. Nature 367, 377–378.

    Google Scholar 

  • Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F., Pachnis, V. (1994). Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383.

    Google Scholar 

  • Silvers, W. (1979). The Coat Colors of Mice. (New York: Springer-Verlag).

    Google Scholar 

  • Simon, M.I., Strathman, M.P., Gautam, N. (1991). Diversity of G proteins in signal transduction. Science 252, 802–808.

    Google Scholar 

  • Siracusa, L.D., Abbott, C.M. (1994). Mouse Chromosome 2. Mammalian Genome (Suppl.), in press.

  • Siracusa, L.D., Buchberg, A.M., Copeland, N.G., Jenkins, N.A. (1989). Recombinant inbred strain and interspecific backcross analysis of molecular markers flanking the murine agouti coat color locus. Genetics 122, 669–679.

    Google Scholar 

  • Tennyson, V.M., Payette, R.F., Rothman, T.P., Gershon, M.D. (1990). Distribution of hyaluronic and chondroitin sulfate proteoglycans in the presumptive aganglionic terminal bowel of ls/ls fetal mice: an ultrastructural analysis. J. Comp. Neurol. 291, 345–362.

    Google Scholar 

  • Warner, T.D. (1993). Characterization of endothelin synthetic pathways and receptor subtypes: physiological and pathophysiological implications. Eur. Heart J. 14, 42–47.

    Google Scholar 

  • Weinstein, L.S., Shenker, A. (1993). G protein mutations in human disease. Clin. Biochem. 26, 333–338.

    Google Scholar 

  • Wilkie, T.M., Gilbert, D.J., Olsen, A.S., Chen, X-N., Amatruda, T.T., Korenberg, J.R., Trask, B.J., de Jong, P., Reed, R.R., Simon, M.I., Jenkins, N.A., Copeland, N.G. (1992). Evolution of the mammalian G protein α subunit multigene family. Nature Genet. 1, 85–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Both authors contributed equally to this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavan, W.J., Liddell, R.A., Wright, A. et al. A high-resolution linkage map of the lethal spotting locus: a mouse model for Hirschsprung disease. Mammalian Genome 6, 1–7 (1995). https://doi.org/10.1007/BF00350885

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350885

Keywords

Navigation