Skip to main content
Log in

Modelling moisture-related mechanical properties of wood Part II: Computation of properties of a model of wood and comparison with experimental data

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Starting with simple concepts of the molecular structure and models of the stiffness and swelling behaviour of lignin, hemi-cellulose and cellulose and building up through the various levels of organisation in the wood cell wall a model has been constructed that simultaneously predicts the variation with moisture content change of both the longitudinal Young's modulus and longitudinal shrinkage of wood. The model closely predicts both longitudinal shrinkage and Young's modulus as they vary with the moisture content of the wood. The model also takes into account structural variations in the form of changes in cell wall layer thicknesses and mean cellulose microfibril orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett, J. D.; Schniewind, A. P.; Taylor, R. L. 1972. Theoretical shrinkage model for wood cell walls. Wood Sci. 4 (3): 178–192

    Google Scholar 

  • Cave, I. D. 1968. Anisotropic elasticity of the plant cell-wall. Wood Sci. Technol. 2: 268–278

    Google Scholar 

  • Cave, I. D. 1969. Longitudinal Young's modulus of Pinus radiata. Wood Sci. Technol. 3: 40–48

    Google Scholar 

  • Cave, I. D. 1972. A theory of the shrinkage of wood. Wood Sci. Technol. 6: 284–292

    Google Scholar 

  • Cave, I. D. 1973. Mechanical properties of fibre reinforced materials—the wood-water system. Ph.D. thesis, Victoria University of Wellington, N.Z.

    Google Scholar 

  • Cave, I. D. 1975. Wood substance as a water reactive fibre reinforced composite. J. Microscopy 104: Pt 1, 47–52

    Google Scholar 

  • Cave, I. D. 1976. Modelling the structure of the softwood cell-wall for computation of mechanical properties. Wood. Sci. Technol. 10: 19–28

    Google Scholar 

  • Cave, I. D. 1978. Modelling moisture-related mechanical properties of wood. Part I: Properties of the wood constituents. Wood Sci. Technol. 12: 75–86

    Google Scholar 

  • Cousins, W. J. 1976. Elastic modulus of lignin as related to moisture content. Wood Sci. Technol. 10: 9–17

    Google Scholar 

  • Cousins, W. J. in press. Young's modulus of hemicellulose as related to moisture content

  • Dunning, C. E. 1968. Cell-wall morphology of longleaf pine latewood. Wood Sci. 1: 65–76

    Google Scholar 

  • Fergus, B. J.; Proctor, A. R.; Scott, J. A. N.; Goring, D. A. I. 1969. The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci. Technol. 3: 117–138

    Google Scholar 

  • Frey-Wyssling, A.; Mülethaler, K. 1965. Ultra-structural plant cytology. Elsevier Publishing Co., Amsterdam

    Google Scholar 

  • Gillis, P. P. 1970. Elastic moduli for plane stress analyses of unidirectional composites with anisotropic rectangular reinforcement. Fibre. Sci. Tech. 2: 192–210

    Google Scholar 

  • Hepler, P. K.; Fosket, D. F.; Newcomb, F. K. 1970. Lignification during secondary wall formation in Coleus. Am. J. Bot. 57: 85–96

    Google Scholar 

  • Hill, R. 1965. Mechanical theory of fibre strengthened materials. II. Self consistent model. J. Mech. Phys. Solids 13: 189–198

    Google Scholar 

  • Keegstra, K.; Talmadge, K. W.; Bauer, W. D.; Albersheim, P. 1973. The structure of plant cell walls. III: A model of the walls of suspension cultured sycamore cells based on the inter-connections of the macromolecular components. Plant Physiol. 51: 188–196

    Google Scholar 

  • Kelsey, K. E.; Clarke, L. N. 1956. The heat of sorption of water by wood. Aust. J. App. Sci. 7: 160–175

    Google Scholar 

  • Mark, R. E. 1967. Cell wall mechanics of tracheids. Yale University Press, New Haven

    Google Scholar 

  • Meylan, B. A. 1972. The influence of microfibril angle on the longitudinal shrinkage-moisture content relationship. Wood Sci. Technol. 6: 293–301

    Google Scholar 

  • Preston, R. D.; Cronshaw, J. 1958. Constitution of the fibrillar and non-fibrillar components of the walls of Valonia ventricosa. 181: 248–250

    Google Scholar 

  • Sakurada, I.; Nukishina, Y.; Ito, T. 1962. Experimental determination of the elastic modulus of the crystalline region of oriented polymers. J. Polymer Sci. 57: 651–660

    Google Scholar 

  • Schniewind, A. P.; Barrett, J. D. 1969. Cell wall model with complete shear restraint. Wood and Fiber 1 (3): 205–214

    Google Scholar 

  • Schniewind, A. P. 1972. Elastic behaviour of the wood fiber. In: Theory and design of wood and fiber composite materials. Ed. B. A. Jayne, Syracuse University Press, New York

    Google Scholar 

  • Sobue, N.; Asano, I. 1976. Studies on the fine structure and mechanical properties of wood. On the longitudinal Young's modulus and shear modulus. J. Japan Wood Res. Soc. 22: 211–216

    Google Scholar 

  • Stamm, A. J.; Smith, W. E. 1969. Laminar sorption and swelling theory for wood and cellulose. Wood Sci. Technol. 3: 301–323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cave, I.D. Modelling moisture-related mechanical properties of wood Part II: Computation of properties of a model of wood and comparison with experimental data. Wood Sci. Technol. 12, 127–139 (1978). https://doi.org/10.1007/BF00350818

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350818

Keywords

Navigation