Skip to main content
Log in

Ultrastructure of compression wood in Ginkgo biloba

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

Compression wood in the ancient Ginkgo biloba differs from that in most of the younger gymnosperms in the more angular outline of its tracheids, their thinner walls, and their lack of helical cavities. Both normal and compression woods of Ginkgo contain two types of tracheids, one wide, with a thin wall, and another, narrow, with a thicker wall. In all other respects the compression wood tracheids in Ginkgo are ultrastructurally similar to those in other gymnosperms. Helical cavities probably developed relatively late in the evolution of compression wood, since they are missing not only in Ginkgo but also in the Taxales and the Araucariaceae. The occurrence of compression wood in Ginkgo biloba indicates that this tissue probably has existed since the Devonean period. Very likely, the arborescent habit of the gymnosperms has always been dependent on their ability to form compression wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, H. N., Jr. 1947. Ancient Plants and the World They Lived in. Comstock Publisher Associates, Ithaca, New York. 279 p.

    Google Scholar 

  • Bailey, I. W. 1933. The cambium and its derivative tissues. VII. Problems in identifying the wood of Mesozoic Coniferae. Ann. Bot. 47: 145–157

    Google Scholar 

  • Beck, C. B. 1960. The identity of Archaeopteris and Callixylon. Britt. 12: 351–368

    Google Scholar 

  • Beck, C. B. 1962. Reconstruction of Archaeopteris and further consideration of its phylogenetic position. Amer. J. Bot. 49: 373–382

    Google Scholar 

  • Beck, C. B. The appearance of gymnospermous structure. Biol. Rev. 45: 379–400

  • Böning, K. 1925. Über den inneren Bau horizontaler und geneigter Sprosse und seine Ursachen. Mitt. Deutsch. Dendrol. Ges. 35: 86–102

    Google Scholar 

  • Casperson, G. 1968. Anatomische Untersuchungen am Lärchenholz (Larix decidua Miller). Faserforsch. Textiltech. 19: 467–476

    Google Scholar 

  • Côté, W. A., Jr.; Day, A. C.; Kutscha, N. P.; Timell, T. E. 1967. Studies on compression wood. V. Nature of the compression wood formed in the early springwood of conifers. Holzforschung 21: 180–186

    Google Scholar 

  • Côté, W. A., Jr.; Simson, B. W.; Timell, T. E. 1966. Studies on compression wood. II. The chemical composition of wood and bark from normal and compression regions of fifteen species of gymnosperms. Svensk Papperstid. 69: 547–558

    Google Scholar 

  • Eicke, R. 1964. Ginkgo biloba. Entwicklungszustand des Holzes und seines Feinbaus. Ber. Deutsch. Bot. Ges. 77: 379–384

    Google Scholar 

  • Eicke, R.; Ehling, E. 1965. Die Ausbildung der jungen Tracheiden im Holz von Ginkgo biloba L. Ber. Deutsch. Bot. Ges. 78: 326–337

    Google Scholar 

  • Fengel, D.; Stoll, M. 1973. Über die Veränderungen des Zellquerschnitts, der Dicke der Zellwand und der Wandschichten von Fichtenholz-Tracheiden innerhalb eines Jahrringes. Holz-forschung 27: 1–7

    Google Scholar 

  • Franklin, A. H. 1959. Ginkgo biloba L.: Historical summary and bibliography. Virginia J. Sci. 10: 131–176

    Google Scholar 

  • Fukazawa, K. 1974. The distribution of lignin in compression- and lateral-wood of abies sachalinensis using ultraviolet microscopy. Res. Bull. Coll. Exp. For. Hokkaido Univ. 31 (1): 87–114

    Google Scholar 

  • Greguss, P. 1958. Some recent data on the xylotomy of the Cycas, Zamia and Ginkgo. Acta Biol. Szeged, 4: 143–147

    Google Scholar 

  • Greguss, P. 1967. Fossil Gymnosperm Woods in Hungary. Akadémiai Kiadó, Budapest, 136 p., 86 plates

    Google Scholar 

  • Hadfield, M. 1960. Some notes on the Ginkgo. Quart. J. For. 54: 331–337

    Google Scholar 

  • Harris, R. A. 1976. Characterization of compression wood severity in Pinus echinata Mill. IAWA Bull. 1976 (4): 47–50

    Google Scholar 

  • Höster, H.-R. 1971. Das Vorkommen von Reaktionsholz bei Tropenhölzern. Mitt. Bundesforschungsanst. Forts-Holzwirtsch. Reinbek, No. 82: 225–231

  • Kennedy, R. W.; Farrar, J. L. 1965. Tracheid development in tilted seedlings. In: Côté, W. A., Jr. Ed.: Cellular Ultrastructure of Woody Plants. Syracuse University Press, Syracuse. 601 p. 419–453

    Google Scholar 

  • Lämmermayr, L. 1901. Beiträge zur Kenntnis der Heterotrophie von Holz und Rinde. Sitzungsber. kaiserl. Akad. Wiss. Math.-Naturwiss. Classe, Wien Pt. 1, 110: 29–62

    Google Scholar 

  • Major, R. T. 1967. The Ginkgo, the most ancient living tree. Science 157: 1270–1273

    Google Scholar 

  • Marey, P. R.; Morey, E. D. 1969. Observations on Epon embedded Griffin Hill peat (Massachusetts), Two Creeks Picea (Wisconsin), Cedrus penhallowii (Sierra Nevada, California) and Callixylon (Delaware, Ohio). Paleontographica 125: 73–80

    Google Scholar 

  • Morey, P. R.; Morey, E. D. 1971. Anatomy of a lignitized wood from Senftenberg. Amer. J. Bot. 58: 621–626

    Google Scholar 

  • Onaka, F. 1949. Studies on compression and tension wood. Mokuzai Kenkyo, No. 1, Wood Res. Inst. Kyoto Univ. Kyoto, 88 p. Translated: Canada, Dept. North. Affairs Natl. Resources, Transl. No. 93, April 1956, 99 p.

  • Patel, R. N. 1963. Spiral thickening in normal and compression wood. Nature 198: 1225–1226

    Google Scholar 

  • Patel, R. N. 1968. Wood anatomy of Podocarpaceae indigenous to New Zealand. 3. Phyllocladus. N. Z. J. Bot. 6: 3–8

    Google Scholar 

  • Seward, A. C. 1938. The story of the maidenhair tree. Sci. Progr. 32: 420–440

    Google Scholar 

  • Seward, A. C.; Gowan, J. 1900. The maidenhair tree (Ginkgo biloba L.). Ann. Bot. 14: 109–154

    Google Scholar 

  • Sporne, K. R. 1965. Morphology of Gymnosperms: Structure and Evolution of Primitive Seed-Plants. Hutchinson University Library, London. 216 p.

    Google Scholar 

  • Srivastava, L. M. 1963. Cambium and vascular derivatives of Ginkgo biloba. J. Arnold Arbor. 44: 165–192

    Google Scholar 

  • Timell, T. E. 1960. Studies on Ginkgo biloba L. I. General characteristics and chemical composition. Svensk Papperstid. 63: 652–657

    Google Scholar 

  • Timell, T. E. 1978a. Compression Wood in Gymnosperms. Volume I. Properties of Compression Wood. Springer-Verlag, Berlin, Heidelberg, New York. In press

    Google Scholar 

  • Timell, T. E. 1978b. Helical thickenings and helical cavities in normal and compression woods of Taxus baccata. Wood Sci. Technol. 12: 1–15

    Google Scholar 

  • Timell, T. E.; Jabbar Mian, A. 1960a. Studies on Ginkgo biloba L. II. The constitution of an arabino-4-O-methylglucurono-xylan from the wood. Svensk Papperstid. 63: 769–774

    Google Scholar 

  • Timell, T. E.; Jabbar Mian, A. 1960b. Studies on Ginkgo biloba L. III. The constitution of a glucomannan from the wood. Svensk Papperstid. 63: 884–888

    Google Scholar 

  • Westing, A. H. 1965. Formation and function of compression wood in gymnosperms. Bot. Rev. 31: 381–480

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was carried out under the McIntire-Stennis Program, Cooperative State Research Service. I am indebted to Mr. A. C. Day of this College and to Mr. A. Rezanowich of the Pulp and Paper Research Institute of Canada for kindly providing the scanning electron micrographs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timell, T.E. Ultrastructure of compression wood in Ginkgo biloba . Wood Sci. Technol. 12, 89–103 (1978). https://doi.org/10.1007/BF00350815

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350815

Keywords

Navigation