Skip to main content
Log in

Medium design for insect cell culture

  • Published:
Cytotechnology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • AmborskiRL & MoskowitzM (1968) The effects of low molecular weight materials derived from animal tissues on the growth of animal cells in vitro. Exptl. Cell Res. 53: 117–128.

    Google Scholar 

  • BédardC, TomR, KamenA & AndréG (1992) Nutrient consumption and waste product accumulation in Sf9 insect cell culture. In: Baculovirus and Recombinant Protein Production Processes (pp. 339–360). JMVlak, E-JSchlaeger & ARBernard (eds). Editiones Roche, Basel, Switzerland.

    Google Scholar 

  • BelisleBW, CeleriC, TangK, MontgomeryT & GongT (1992) From shake flask to large scale: Cell and virus production in serum-free media. In: Baculovirus and Recombinant Protein Production Processes (pp. 226–233). In: VlakJM, SchlaegerE-J & ARBernard (eds). Editiones Roche, Basel, Switzerland.

    Google Scholar 

  • BirchJR, BorastonRC, MetcalfeH, BrownME, BebbingtonCR & FieldRE (1994) Selecting and designing cell lines for improved physiological characteristics. Cytotechnology 15: 11–16.

    Google Scholar 

  • ButlerM & JenkinsH (1989) Nutritional aspects of the growth of animal cells in culture. J. Biotechnol. 12: 97–110.

    Google Scholar 

  • ButlerM (1992) Serum-free media for neuronal cell culture. In: Neuronal Cell Lines. A Practical Approach (pp. 55–75). JNWood (ed.). Oxford University Press, Oxford.

    Google Scholar 

  • CameronR, PosseeRD & BishopDH (1989) Insect cell culture technology in baculovirus expression systems. TIBTECH 7: 66–70.

    Google Scholar 

  • DaviesAH (1994) Current methods for manipulating baculoviruses. Bio/Technology 12: 47–50.

    Google Scholar 

  • DavisTR, WickhamTJ, McKennaKA, GranadosRR, ShulerML & WoodHA (1993) Comparative recombinant protein production of eight insect cell lines. In Vitro Cell Dev. Biol. 29A: 388–390.

    Google Scholar 

  • FerkovichSM & OberlanderH (1991) Growth factors in invertebrate in vitro culture. In Vitro Cell. Biol. 27A: 483–486.

    Google Scholar 

  • GardinerGR & StockdaleH (1975) Two tissue culture media for production of Lepidopteran cells and nuclear polyhydrosis viruses. J. Invertebr. Path. 25: 363–370.

    Google Scholar 

  • GinsbergHS, GoldE & JordanWS (1955) Tryptose phosphate broth as supplementary factor maintenance of HeLa cell tissue culture. Proc. Soc. Exp. Biol. Med. 89: 66–71.

    Google Scholar 

  • GlackenMW, FleischakerRJ & SinskeyAJ (1986) Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol. Bioeng. 28: 1376–1389.

    Google Scholar 

  • GoodwinRH (1975) Insect cell culture: Improved media and methods for initiating attached cell lines from the Lepidoptera. In Vitro 11: 396.

    Google Scholar 

  • GoodwinRH & AdamsJR (1980) Nutrient factors influencing viral replication in serum-free insect cell line culture. In: Invertebrate Systems in Vitro (pp. 493–509). KurstakE, MaramoroschK & DubendorferA (eds.) Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Goodwin RH (1985) Growth of insect cells in serum-free media. In: Techniques in the Life Science, Cell Biology. Vol C1, Techniques in setting up and maintenance of tissue and cell cultures (C109, pp. 28). Elsevier Scientific Publishers Ireland Ltd.

  • GoodwinRH (1989) Construction of peptoliposomes for the incorporation of nutrient lipid supplements in insect cell culture media. J. Tissue Culture Meth. 12: 17–20.

    Google Scholar 

  • GoodwinRH (1991) Replacement of vertebrate serum with lipids and other factors in the culture of invertebrate cells, tissues, parasites, and pathogens. In Vitro Cell. Dev. Biol. 27A: 470–478.

    Google Scholar 

  • GraceTDC (1962) Establishment of four strains of cells from insect tissue grown in vitro. Nature 195: 788–789.

    Google Scholar 

  • GraceTDC (1982) Development of insect cell culture. In: Invertebrate Cell Culture Applications (pp. 1–8). K.Maramorosch (ed.), Academic Press, New York.

    Google Scholar 

  • GuineaR, & CarrascoI (1990) Phospholipid biosynthesis and poliovirus genome replication, two coupled phenomena. EMBO J. 9: 2011–2016.

    Google Scholar 

  • HandaA, EmeryAN & SpiersRE (1987) On the evaluation of gasliquid interfacial effects on hybridoma viability in bubble column bioreactors. Delvelop. Biol. Standard 66: 241–252.

    Google Scholar 

  • HansenHA & EmborgC (1992) Complex medium supplements give difficulties when investigating mammalian cell physiology. In: Animal Cell Technology: Developments, Processes & Products (pp. 248–250). SpierRE, GriffithsJB & MacDonaldC (eds), Butterworth-Heinemann Ltd, Oxford.

    Google Scholar 

  • HassellT & ButlerM (1990) Adaption to non-ammoniagenic medium and selective substrate feeding lead to enhanced yields in animal cell cultures. J. Cell Sci. 96: 501–508.

    Google Scholar 

  • HideG (1990) Identification of an EGF receptor homologue in trypanosomes. In: parasites, molecular biology, drug and vaccine design; UCLA symposia on molecular and cellular biology, new series, Vol. 130 (pp. 213–224). AgabianN & CeramiA (eds). Wiley-Liss, New York.

    Google Scholar 

  • HinkWF (1970) Established cell line from the cabbage looper, Trichoplusia ni. Nature 226: 466–467.

    Google Scholar 

  • HinkWF & StraussEM (1980) In: Invertebrate tissue culture (pp. 297–300). KurstakE & MaramoroschK (eds). Academic Press, New York.

    Google Scholar 

  • HinkWF (1982) Production of Autographa californica nuclear polyhydrosis virus in cells from large- scale suspension cultures. In: Microbial and Viral Pesticides (pp. 493–506). KurstakE (ed). Marcel Dekker, New York.

    Google Scholar 

  • HinkWF (1991) A serum-free medium for the culture of insect cells and production of recombinant proteins. In Vitro Cell. Dev. Biol. 27a: 397–401.

    Google Scholar 

  • HsuehHW & MoskowitzM (1972) A growth factor for animal cells derived from peptone. Exptl. Cell Res. 77: 376–382.

    Google Scholar 

  • HubnersHA, HubnersE & WebbBA (1988) Iron binding proteins and their roles in the tabacco hornworm, Manduca sexta (L). J. Comp. Physiol. B158: 291–300.

    Google Scholar 

  • HurshDA, AndrewsME & RaffA (1987) A sea urchin gene encodes a polypeptide homologous to epidermal growth factor. Science 237: 1487–1490.

    Google Scholar 

  • InlowD, ShaugerA & MaiorellaB (1989) Insect cell culture and baculovirus propagation in protein-free medium. J. Tissue Culture Meth. 12: 13–16.

    Google Scholar 

  • IscoveNN (1984) Culture of lymphocytes and hemopoietic cells in serum-free medium. In: Cell Culture Methods for Molecular and Cell Biology, vol. 4 (Methods for serum-free culture of neuronal and lymphoid cells, pp. 169–185). BarnesDW, SirbascuDA & SatoGH (eds). Alan R. Liss, Inc., New York.

    Google Scholar 

  • JonesBM & CunninghamI (1961) Growth by cell division in insect tissue culture. Exp. Cell Res. 23: 386–401.

    Google Scholar 

  • KilburnDG & WebbFC (1968) The cultivation of animal cells at controlled dissolved oxygen partial pressure. Biotechnol. Bioeng. 10: 801–814.

    Google Scholar 

  • KingME & SpectorAA (1981) Lipid metabolism in cultured cells. In: The growth requirements of vertebrate cells in vitro (pp. 293–312). WaymouthC, HamRG & ChapplePJ (eds). Cambridge University Press, Cambridge.

    Google Scholar 

  • LawJH & WellsMA (1989) Insects as biochemical models. J. Biol. Chem. 264: 16335–16338.

    Google Scholar 

  • LjunggrenJ & HäggströmI (1992) Glutamine limited fed-batch culture reduces the overflow metabolism of amino acids in myeloma cells. Cytotechnology 8: 45–56.

    Google Scholar 

  • LuckowVA & SummersMD (1988) Trends in the development of baculovirus expression vectors. Bio/Technology 6: 47–55.

    Google Scholar 

  • LuckowVA (1991) Cloning and expression of heterologous genes in insect cells with baculovirus vectors. In: Recombinant DNA Technology and Applications (pp. 97–152). ProkopA, BajpaiRK & HoCS (eds). McGraw-Hill Inc, New York.

    Google Scholar 

  • LuckowVA (1993) Baculovirus systems for the expression of human gene products. Curr. Opinion Biotechnol. 4: 564–572.

    Google Scholar 

  • MaiorellaB, InlowD, ShaugerA & HaranoD (1988) Largescale insect cell-culture for recombinant protein production. Bio/Technology 6: 1406–1410.

    Google Scholar 

  • MillerDW, SaferP & MillerLK (1986) An insect baculovirus host-vector system for high-level expression of foreign genes. In: Genetic Engineering, Vol. 8, Principles and Methods (pp. 277–298). SetlowJK & HollanderA (eds). Plenum Publishing Corp., New York.

    Google Scholar 

  • MiltenburgerHG & KriegA (1984) Bioinsecticides: II. Baculoviridae. In: Advances in Biotechnological Processes 3 (pp. 291–313). Alan R. Liss, Inc., New York.

    Google Scholar 

  • MitsuhashiJ & MaramoroschK (1964) Leafhopper Tissue Culture: Embryonic, Nymphal and Imaginal Tissues from Aseptic Insects. Contrib. Boyce Thomson Inst. 22: 435–460.

    Google Scholar 

  • MitsuhashiJ (1982) Media for insect cell cultures. In: Advances in Cell Cultures, vol 2 (pp. 133–197). MaramoroschK (ed.). Academic Press, New York.

    Google Scholar 

  • MitsuhashiJ (1989) Simplified medium (MTCM-1601) for insect cell lines. J. Tissue Culture Meth. 12: 21–22.

    Google Scholar 

  • MizrahiA (1975) Pluronic polyols in human lymphocyte cell line cultures. J. Clin. Microbiol. 2: 11–13.

    Google Scholar 

  • MurhammerDW & GoocheeCF (1988) Scaleup of insect cell cultures: protective effects of Pluronic F-68. Bio/Technology 6: 1411–1418.

    Google Scholar 

  • MuskavitchMAT & HoffmannFM (1990) Homologs of vertebrate growth factors in Drosophila melanogaster and other invertebrates. In: Growth factors and development (Current topics in developmental biology, vol. 24). Nilsen-HamiltonM (ed.), Academic Press, San Diego, CA.

    Google Scholar 

  • O'ReillyDR, MillerLK & LuckowVA (1992) Insect cell culture media. In: Baculovirus expression vectors. A Laboratory Manual (pp. 110–117). WH Freeman and Company. New York.

    Google Scholar 

  • PadgettRW, St JohnstonRD & GelbartWM (1987) A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature 325: 81–84.

    Google Scholar 

  • Radford KM, Cavegn, C, Bertrand M & Bernard AR (1995) The indirect effect of multiplicity of infection in baculovirus infected insect cell cultures on recombinant protein expression. Baculovirus and Insect Cell Gene Expression Conference. Pinehurst, N.C. (USA), March 26–30.

  • RöderA (1982) Development of a serum-free medium for cultivation of insect cells. Naturwissenschaften 69: 92–93.

    Google Scholar 

  • RoosDS, DuchalaCS & Stephensen (1990) Control of virus-induced cell fusion by host cell lipid composition. Virology 175: 345–357.

    Google Scholar 

  • SchlaegerE-J & SchumppB (1992) Propagation of mouse myeloma cell line J558L producing human CD4 immunoglobulin G1. J. Immunol. Meth. 146: 111–120/

    Google Scholar 

  • SchlaegerE-J., LoetscherH & GentzR (1992A) Production of recombinant soluble human TNF receptors. In: Baculovirus and Recombinant Protein Production Processes (pp. 201–208). VlakJM, SchlaegerE-J & BernardAR (eds). Editiones Roche, Basel, Switzerland.

    Google Scholar 

  • SchlaegerE-J, LoetscherH & GentzR (1992B) Production of recombinant soluble human TNF receptor using the baculovirus insect cell expression system. In: Animal Cell Technology: Developments, Processes & Products (pp. 562–568). SpierRE, GriffithsJB & MacDonaldC (eds). Butterworth-Heinemann Ltd, Oxford.

    Google Scholar 

  • SchlaegerE-J, FoggettaM, VonachJM & ChristensenK (1993) SF-1 a low cost culture medium for the production of recombinant proteins in baculovirus infected insect cells. Biotechnol. Techn. 7: 183–188.

    Google Scholar 

  • SchlaegerE-J, StrickerJ, WipplerJ & FoggettaM (1996) Investigations of high cell density baculovirus infection using Sf9 and High Five insect cell lines in the low-cost SF-1 medium. In: Animal Cell Technology ‘Developments towards the 21st Centur’ (pp. 313–315). BeuveryEC, GriffithsJB & ZeijlemakerWP (eds). Kluwer Academic Publishers. Dordrecht/Boston/London

    Google Scholar 

  • SchlaegerE-J & ChristensenK (1996) Improvement of mammalian cell fed-batch culture. In: Animal Cell Technology ‘Developments towards the 21st Century’ (pp. 855–857). BeuveryEC, GriffithsJB & ZeijlemakerWP (eds). Kluwer Academic Publishers Dordrecht/Boston/London.

    Google Scholar 

  • Schlaeger E-J (1996) The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promotor of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J Immunol. Meth., in press.

  • SchmidG, HuberF & KerschbaumerR (1992) Adaption of hybridoma cells to hydrodynamic stress under continuous culture conditions. In: Animal Cell Technology: Developments, Processes & Products (pp. 203–205). SpierRE, GriffithsRB & MacDonaldC (eds). Butterworth-Heinemann Ltd., Oxford.

    Google Scholar 

  • SchumppB & SchlaegerE-J (1990) Optimization of culture conditions for high cell density proliferation of HL-60 human promyelocytic leukemia cells. J. Cell Science 97: 639–647.

    Google Scholar 

  • SmithGE, SummersMD & FraserMJ (1983) Production of human beta interferon in insect cells infected with a baculovirus vector. Mol. Cell. Biol. 3: 2156–2165.

    Google Scholar 

  • SpectorAA, MathurSN, KaduceTL & HymanBT (1981) Lipid nutrition and metabolism of cultured mammalian cells. Prog.Lipid Res. 19: 155–186.

    Google Scholar 

  • Summers MD & Smith GE (1987) A manual of methods for baculovirus vectors and insect cell culture procedures. Bulletin No. 1555. Texas Agricultural Experimental Station.

  • TaylorWG, DworkinRA, PumperRW & EvansVJ (1972) Biological efficacy of several commercially available peptones for mammalian cells in culture. Exptl. Cell Res. 74: 275–278.

    Google Scholar 

  • TomkinsGJ, DoughertyEM & GoodwinRH (1991) Maintenance of infectivity and virulence of nuclear polyhydrosis viruses during serial passage in noctuid (Lepidoptera: Noctudae) cell lines. J. Econ. Entomol. 84: 445–449.

    Google Scholar 

  • TramperJ, WilliamsJB, JoustraD & VlakJM (1986) Shear sensitivity of insect cells in suspension. Enzyme Microb. Technol. 8: 33–36.

    Google Scholar 

  • VaughnJL (1968) A review of the use of insect tissue culture for the study of insect-associated viruses. Curr. Top. Microbiol. Immunol. 42: 108–128.

    Google Scholar 

  • VaughnJL, GoodwinRH, TomkinsGJ & McCawleyP(1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepipdoptera: Noctuidae). In Vitro 13: 213–217.

    Google Scholar 

  • VaughnJL & FanF (1989) The use of commercial serum replacements for the culture of insect cells. In Vitro Cellular & Developmental Biology 25: 143–145.

    Google Scholar 

  • VelezD, ReuvenyS, MillerI & MacmillanJD (1986) Kinetics of monoclonal antibody production in low serum growth medium. J. Immunol. Methods 86: 45–52.

    Google Scholar 

  • VlakJM (1992) The biology of baculoviruses in vivo and in cultered insect cells. In: Baculovirus and Recombinant Protein Production Processes (pp. 2–10). VlakJM, SchlaegerE-J & BernardAR (eds). Editiones Roche, Basel, Switzerland.

    Google Scholar 

  • WhartonKA, JohansenKM & XuT (1985) Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43: 567–581.

    Google Scholar 

  • WeissSA, SmithGC, KalterSS & VaughnJL (1981) Improved method for the production of insect cell cultures in large volume. In Vitro 17: 495–502.

    Google Scholar 

  • WeissSA & VaughnJL (1986) Cell culture methods for large-scale propagation of baculoviruses. In: The Biology of Baculoviruses, vol. 2 (pp. 63–67) GranadosRR & FedericiBA (eds). CRC Press, Inc., Boca Raton, Fla.

    Google Scholar 

  • WeissSA, WhitfordWG, GodwinGP & ReidS (1992) Media design: Optimizing of recombinant proteins in serum-free culture. In: Baculovirus and Recombinant Protein Production Processes (pp. 306–314). VlakJM, SchlaegerE-J & BernardAR (eds). Editiones Roche, Basel, Switzerland.

    Google Scholar 

  • WoodHA & GranadosRR (1991) Genetically engineneered baculoviruses as agents for pest control. Annu. Rev. Microbiol. 45: 69–87.

    Google Scholar 

  • WuJ, KingG, DaugulisAJ, FaulknerP, BoneDH & GoosenMFA (1989) Engineering aspects of insect cell suspension culture: a review. Appl. Microbiol. Biotechnol. 32: 249–255.

    Google Scholar 

  • WyattGR (1961) The biochemistry of insect hemolymph. Ann.u Rev. Entomol. 6: 75.

    Google Scholar 

  • WyattSS (1956) Culture in vitro of tissue from the silkworm Bombyx mori. J. Gen. Physiol. 39: 841–852.

    Google Scholar 

  • YamaneI & MurakamiO (1973) 6,8-dihydroxypurine: A novel growth factor for mammalian cells in vitro, isolated from a commercial peptone. J. Cell Physiol. 81: 281–284.

    Google Scholar 

  • YunkerCE, CoryJ & MeibosH (1981) Continuous cell lines from embryonic tissues of ticks. In Vitro 17: 139–142.

    Google Scholar 

  • ZoonKC, BridgenPJ & SmithME (1979) Production of human lymphoblastoid interferon by Namalwa cells cultured in serumfree media. J. Gen. Virology 44: 227–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlaeger, EJ. Medium design for insect cell culture. Cytotechnology 20, 57–70 (1996). https://doi.org/10.1007/BF00350389

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350389

Key words

Navigation