Skip to main content
Log in

Finite deformation formulation of a shell element for problems of sheet metal forming

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An elastic-plastic thin shell finite element suitable for problems of finite deformation in sheet metal forming is formulated. Hill's yield criterion for sheet materials of normal anisotropy is applied. A nonlinear shell theory in a form of an incremental variational principle and a quasi-conforming element technique are employed in the Lagrangian formulation. The shell element fulfills the inter-element C 1 continuity condition in a variational sense and has a sufficient rank to allow finite stretching, rotation and bending of the shell element. The accuracy and efficiency of the finite element formulation are illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalami, B.; Williames, D. G. (1975): Thin plate design for transverse loading. London: Constrado Monographs

    Google Scholar 

  • Chandra, A.; Mukherjee, S. (1984): A finite element analysis of metal-forming problems with an elastic viscoplastic material model. I. J. Num. Meth. Eng. 20, 1613–1628

    Google Scholar 

  • Dinis, L. M. S.; Owen, D. R. J. (1982): Elasto-viscoplastic and elasto-plastic large deformation analysis of thin plates and shells. I. J. Num. Meth. Eng. 18, 591–606

    Google Scholar 

  • Dupuis, G. A.; Hibbit, H. H.; McNamara, S. F.; and Marcal, P. V. (1971): Nonlinear material and geometric behavior of shell structures. Comput. Struct. 1, 223–239

    Google Scholar 

  • Hill, R. (1958): A general theory of uniqueness and stability of elastic-plastic solids. J. Mech. Phys. Solids 6, 236–249

    Google Scholar 

  • Hill, R. (1979): Theoretical plasticity of textured aggregates. Math. Proc. Cambridge Phil. Society 85, 179–191

    Google Scholar 

  • Horrigmoe, G.; Bergan, P. G. (1976): Incremental variational principles and finite element models for nonlinear problems. Comp. Meth. Appl. Mech. Eng. 7, 201–217

    Google Scholar 

  • Huang, H. C.; Hinton, E. (1986): Elastic-plastic and geometrically nonlinear analysis of plates and shells using a new nine node element. In: Bergan, P. G.; Bathe, K. J.; Wunderlich, W. (eds). Finite Element Methods for Nonlinear Problems, Proc. Europe-U.S. Symp. Trondheim, Norway, 1985, pp 283–298. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Javaherian, H.; Dowling, P. J.; Lyons, L. P. R. (1980): Nonlinear linite element analysis of shell structures using the Semiloof element. Comput. Struct. 12, 147–159

    Google Scholar 

  • Jiang, H. Y. (1988): Variational basis for large deformed elements of plates and shells by quasi-conforming technique. J. Dalian Univ. of Tech., 28, 23–28 (in Chinese)

    Google Scholar 

  • Lee, L. H. N. (1987): Wrinkling in sheet metal forming. In: Samanta, S. K.; Komanduri, R.; McMeeking, R.; Chen, M. M.; Tseng, A. (eds): Interdisciplinary issues in materials processing and manufacturing, volume 2, pp. 419–436. New York: ASME

    Google Scholar 

  • Mellor, P. B. (1982): Experimental studies of plastic anisotropy in sheet metal. In: Hopkins, H. G.; Sewell, M. G. (eds): Mechanics of solids—The Rodney Hill 60th Anniversary volume. pp 383–415. New York: Pergamon Press

    Google Scholar 

  • Naghdi, P. M. (1972): The theory of plates and shells. In: Flügge, S. (ed): Encyclopedia of Physics, 2nd ed., VI a/z, pp. 425–640. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Nayak, G. C.; Zienkiewicz, O. C. (1972): Elasto-plastic stress analysis. A generalization using isoparametric elements and various constitutive relations including strain softening. I. J. Num. Meth. Eng., 5, 113–135

    Google Scholar 

  • Needleman, A.; Tvergaard, V. (1984): Finite element analysis of localization in pasticity. In: Oden, J. T.; Carey, G. F. (eds): Finite Elements: Special Problems in Solid Mechanics, Vol. 5, pp. 94–157. New York: Prentice-Hall

    Google Scholar 

  • Oñate, E.; Zienkiewicz, O. C. (1983): A viscous shell formulation for the analysis of thin sheet metal forming. Int. J. Mech. Sci. 25, 305–335

    Google Scholar 

  • Owen, D. R. J.; Figueiras, J. A. (1983): Elasto-plastic analysis of anisotropic plates and shells by the Semiloof element, I. J. Num. Meth. Eng. 19, 521–539

    Google Scholar 

  • Parisch, H. (1981): Large displacements of shells including material nonlinearities. Comp. Meth. Appl. Mech. Eng. 27, 183–214

    Google Scholar 

  • Pian, T. H. H. (1964): Derivation of element stiffness matrices by assumed stress distribution. AIAA J. 2, 1333–1336

    Google Scholar 

  • Saigal, S.; Yang, T. Y. (1985): Elastic-viscoplastic, large deformation formulations of a curved quadrilateral thin shell element. I. J. Num. Mech. Eng. 21, 1897–1909

    Google Scholar 

  • Tang, L. M.; Chen, J.; Liu, Y. X. (1984): Formulation of quasi-conforming element and Hu-Washizu principle. Comput. Struct. 19, 247–250

    Google Scholar 

  • Teng, J. G.; Rotter, J. M. (1989): Elastic-plastic large deflection analysis of axisymmetric shells. Comput. Struct. 31, 211–233

    Google Scholar 

  • Washizu, K. (1982): Variational methods in elasticity and plasticity, 3rd ed. New York: Pergamon Press

    Google Scholar 

  • Wempner, G. (1989): Mechanics and finite elements of shells. Appl. Mech. Rev. 42, 129–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, March 27, 1990

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Jiang, H.Y. & Lee, L.H.N. Finite deformation formulation of a shell element for problems of sheet metal forming. Computational Mechanics 7, 397–411 (1991). https://doi.org/10.1007/BF00350168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350168

Keywords

Navigation