Skip to main content
Log in

Axisymmetric boundary integral equation analysis of interface cracks between dissimilar materials

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The numerical boundary integral equation (BIE) method with quadratic quarter-point crack-tip singular elements is used to analyse interface cracks between dissimilar material in axisymmetry. Such crack problems present modelling difficulties using conventional procedures for obtaining the stress intensity factors. This is because of the oscillatorily singular nature of the stresses in the vicinity of the bimaterial interface crack-tip. Analytical expressions for the direct evaluation of the fracture characterising parameters from the BIE numerical results of displacements or tractions are derived. Three different crack problems are investigated, two of which have known solutions in the literature. Excellent agreement between the BIE results and these other established solutions are obtained even with relatively coarse mesh discretisations. The present study illustrates the ease with which the BIE method may be used in the fracture analysis of both straight and curved binaterial interface cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams, M. L. (1959): The stresses around a fault or crack in dissimilar media. Bull. Seismological Soc. Amer. 49, 199–204

    Google Scholar 

  2. Rice, J. R.; Sih, G. C. (1965): Plane problems of cracks in dissimilar media. Trans. ASME J. Appl. Mech. 32, 418–423

    Google Scholar 

  3. England, A. H. (1965): A crack between dissimilar media. Trans. ASME J. Appl. Mech. 32, 400–402

    Google Scholar 

  4. Malyshev, B. M.; Salganik, R. L. (1965): The strength of adhesive joints using the theory of fracture. Int. J. Fracture Mech. 1, 114–128

    Google Scholar 

  5. Comninou, M. (1977): The interface crack. Trans. ASME J. Appl. Mech. 44, 631–636

    Google Scholar 

  6. Rice, J. R. (1988): Elastic fracture mechanics concepts for interfacial cracks. Trans. ASME J. Appl. Mech. 55, 98–103

    Google Scholar 

  7. Sih, G. C.; Rice, J. R. (1964): The bending of plates of dissimilar materials with cracks. Trans. ASME J. Appl. Mech. 31, 477–482

    Google Scholar 

  8. Perlman, A. B.; Sih, G. C. (1967): Elastostatic problems of curvilinear cracks in bonded dissimilar materials. Int. J. Engg. Sc. 6, 845–867

    Google Scholar 

  9. England, A. H. (1966): An are crack around a circular elastic inclusion. Trans. ASME J. Appl. Mech. 33, 637–640

    Google Scholar 

  10. Erdogan, F. (1965): Stress distribution in bonded dissimilar materials with cracks. Trans. ASME J. Appl. Mech. 32, 403–410

    Google Scholar 

  11. Toya, M. (1974): A crack along the interface of a circular inclusion embedded in an infinite solid. J. Mech. Phys. Solids 22, 325–348

    Google Scholar 

  12. Goree, J. G.; Venezia, W. A. (1977): Bonded elastic half planes with an interface crack and a perpendicular intersecting crack that extends into the adjacent material. Int. J. Engg. Sci. 15, 1–17

    Google Scholar 

  13. Viola, E.; Piva, A. (1981): Fracture behaviour by two cracks around an elliptic rigid inclusion. Engg. Fracture Mech. 15, 303–325

    Google Scholar 

  14. Hasebe, N.; Okumura, M.; Nakamura, T. (1987): Stress analysis of a debonding and a crack around a circular rigid inclusion. Int. J. Fracture 32, 169–183

    Google Scholar 

  15. Kaczynski, A.; Matysiak, S.J. (1989): A system of interface cracks in a periodically layered-elastic composite. Engg. Fracture Mech. 32, 745–756

    Google Scholar 

  16. Mossakovskii, V. I.; Rybka, M. T. (1964): Generalisation of the Griffith-Sneddon criterion for the case of a non-homogeneous body. J. Appl. Math. Mech. 28, 1061–1069

    Google Scholar 

  17. Kassir, M. K.; Bregman, A. M (1972): The stress intensity factor for a penny shaped crack between two dissimilar materials. Trans. ASME J. Appl. Mech. 36, 308–310

    Google Scholar 

  18. Lin, K. Y.; Mar, J. W. (1976): Finite element analysis of stress intensity factors for cracks at a bimaterial interface. Int. J. Fracture 12, 521–531

    Google Scholar 

  19. Smelser, R. E. (1979): Evaluation of stress intensity factors for bimaterial bodies using numerical crack flank displacement data. Int. J. Fracture. 15, 135–143

    Google Scholar 

  20. Nishioka, T.; Atluri, S. N. (1981): Analyses of cracks in adhesively bonded metallic laminates by the 3-D assumed stress hybrid FEM. In: Proc. AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials Conf., Atlanta, 66–70

  21. Kuo, A. Y.; Wang, S. S. (1985): A dynamic finite element analysis of interfacial cracks in composites. ASTM STP 876, 5–34

    Google Scholar 

  22. Sun, C. T.; Jih, C. J. (1987): On strain energy release rates for interfacial cracks in bimaterial media. Engg. Fracture Mech. 28, 13–20

    Google Scholar 

  23. Sun, C. T.; Manoharan, M. G. (1989): Strain energy release rates of an interfacial crack between two orthotropic solids. J. Composite Materials 23, 460–478

    Google Scholar 

  24. Matos, P. P. L.; McMeeking, R. M.; Charalambides, P. G.; Drory, M. D. (1989): A method of calculating stress intensities in bimaterial fracture. Int. J. Fracture 40, 235–254

    Google Scholar 

  25. Yehia, N. A. B.; Shephard, M. S. (1988): Automatic crack growth tracking of bimaterial interface cracks. Int. J. Fracture. 37, 123–135

    Google Scholar 

  26. Buchholz, F. G.; Schulte-Frankenfeld, N.; Meiners, B. (1987): Fracture analysis of mixed-mode failure processes in a 3D-fibre/matrix composite cylinder. Proc. 6th Int. Conf. on Composite Materials ICCM-VI, London, England, Vol 3, 3.417–3.428

    Google Scholar 

  27. Chen, K. L.; Atluri, S. N. (1989): Comparison of different methods of evaluation of weight functions for 2D mixed-mode fracture analyses. Engg. Fracture Mech. 34, 935–956

    Google Scholar 

  28. Yuuki, R.; Cho, S. B.; Matsumoto, T.; Kisu, H. (1987): Usefulness of Hentenyi's solution for boundary element analysis of crack problems in dissimilar materials. In: Role of Fracture Mechanics in Modern Technology, G. C. Sih, H. Nisitani and T. Ishihara (eds.), Elsevier Sc. Pub., 823–834

  29. Yuuki, R.; Cho, S. B. (1989): Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials. Engg. Fracture Mech. 30, 179–188

    Google Scholar 

  30. Lee, K. Y.; Choi, H. J. (1988): Boundary element analysis of stress intensity factors for bimaterial interface cracks. Engg. Fracture Mech. 29, 461–472

    Google Scholar 

  31. Tan, C. L.; Gao, Y. L. (1990): Treatment of bimaterial interface crack problems using the boundary element method. Engg. Fracture Mech. 36, 919–932

    Google Scholar 

  32. Tan, C. L.; Gao, Y. L.; Selvadurai, A. P. S. (1990): Stress intensity factors for cracks around or penetrating an elliptic inclusion using the boundary element method. Comp. Mech. Comm. (in press)

  33. Hong, C. C.; Stern, M. (1978): The computation of stress intensity factors in dissimilar materials. J. Elasticity, 8, 21–34

    Google Scholar 

  34. Charalambides, P. G.; Lund, J.; McMeeking, R. M.; Evans, A. G. (1989): A test specimen for determining the fracture resistance of bimaterial interfaces. Trans. ASME J. Appl. Mech. 56, 77–82

    Google Scholar 

  35. Hutchinson, J. W.; Evans, A. G. (1989): On the mixed mode fracture resistance of interfaces. Acta Mettall. 37, 909–916

    Google Scholar 

  36. Kermanidis, T. (1975): A numerical solution for axially symmetrical elasticity. Int. J. Solids Struct. 11, 493–500

    Google Scholar 

  37. Lachat, J. C.; Watson, J. O. (1975): Progress in the use of boundary integral equations, illustrated by examples. Comput. Meth. Appl. Mech. Engg. 10, 273–289

    Google Scholar 

  38. Cruse, T. A.; Wilson, R. B. (1977): Boundary integral equation method for elastic fracture mechanics analysis. AFOSR-TR-78-0355 Rpt.

  39. Blandford, G. E.; Ingraffea, A. R.; Ligget, J. A. (1981): Two dimensional stress intensity factor computations using the boundary element method. Int. J. Num. Meth. Engg. 17, 387–404

    Google Scholar 

  40. Martinez, J.; Dominguez, J. (1984): On the use of quarter-point boundary elements for stress intensity factor computations. Int. J. Num. Meth. Engg. 20, 1941–1950

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.N. Atluri, July 10, 1990

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, C.L., Gao, Y.L. Axisymmetric boundary integral equation analysis of interface cracks between dissimilar materials. Computational Mechanics 7, 381–396 (1991). https://doi.org/10.1007/BF00350167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350167

Keywords

Navigation