Skip to main content
Log in

A finite element model for Mindlin plates

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the general framework of Reissner-Mindlin theory, a plate model based on certain ‘potential functions’ is discussed, together with its mechanical interpretation. A finite element implementation is also described and numerical results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, D. N.; Brezzi, F.; Fortin, M. (1984): A stable finite element for the Stokes equation. Calcolo 21, 337–344

    Google Scholar 

  • Bathe, K. J.; Brezzi, F. (1985): On the convergence of a four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation. In: Whiteman, J. R. (Ed): Proc. Conference on Mathematics of Finite Elements and Applications—V, 491–503, New York: Academic Press

    Google Scholar 

  • Bathe, K. J.; Brezzi, F. (1987): A simplified analysis of two plate bending elements—The MITC4 and MITC9 Elements. In: Pande, G. N.; Middleton, J. (eds). NUMETA 87: Vol. 1—Numerical Techniques for Engineering Analysis and Design, D46/1–D46/11, Amsterdam: Martinus Nijhoff

    Google Scholar 

  • Bathe, K. J.; Dvorkin, E. (1985): A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation. Int. J. Num. Meth. Engg. 21, 367–383

    Google Scholar 

  • Batoz, J. L. (1982): An explicit formulation for an efficient triangular plate-bending element. Int. J. Num. Meths. Engg. 18, 1077–1089

    Google Scholar 

  • Belytschko, T.; Tsay, C. S. (1983): A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int. J. Num. Meth. Engg. 19, 405–419

    Google Scholar 

  • Brezzi, F.; Bathe, K. J.; Fortin, M. (1989): Mixed-interpolated elements for Reissner-Mindlin plates. Int. J. Num. Meths. Engg. 28, 1787–1801

    Google Scholar 

  • Brezzi, F.; Fortin, M. (1986): Numerical approximation of Mindlin-Reissner plates. Math. Comp. 47, 151–158

    Google Scholar 

  • Ciarlet, P. G. (1978): The finite element method for elliptic problems. Amsterdam: North-Holland

    Google Scholar 

  • Crisfield, M. A. (1984): A quadratic Mindlin element using shear constraints. Comp. & Struct. 18, 833–852

    Google Scholar 

  • Donea, J.; Lamian, L. G. (1987): A modified representation of transverse shear in C 0 quadrilateral plate elements. Comp. Meth. Appl. Mech. Engg. 63, 183–207

    Google Scholar 

  • Girault, V.; Raviart, P. A. (1979): Finite element approximation of the Navier-Stokes equations. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Hughes, T. J. R. (1987): The finite element method: Linear static and dynamic finite element analysis. Englewood Cliffs, NJ: Prentice Hall

    Google Scholar 

  • Hughes, T. J. R.; Franca, L. P. (1988): A mixed finite element method for Reissner-Mindlin plate theory. Comp. Meth. Appl. Mech. Engg. 67, 223–240

    Google Scholar 

  • Hughes, T. J. R.; Taylor, R. L.; Kanoknukulchai, W. (1977): A simple and efficient element for plate bending. Int. J. Num. Meths. Engg. 11, 1529–1543

    Google Scholar 

  • Kikuchi, F. (1983): On a mixed method related to the discrete Kirchhoff assumption. In: Atluri, S. N., Gallagher, R. H.; Zienkiewicz, O. C. (eds): Hybrid and mixed finite element methods, 137–154. Chichester, U.K.: Wiley

    Google Scholar 

  • Pitkäranta, J. (1986): On simple finite element methods for Mindlin plates. In: Yagawa, G.; Atluri, S. N. (eds): Computational mechanics 1, 187–190. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Reddy, J. N. (1986): Applied functional analysis and variational methods in engineering. New York: McGraw-Hill

    Google Scholar 

  • Tessler, A.; Hughes, T. J. R. (1985): A three node Mindlin plate element with improved transverse shear. Comp. Meth. Appl. Mech. Engg. 50, 71–101

    Google Scholar 

  • Timoshenko, S.; Woinsoky-Kuegs, S. (1959): Theory of plate shells, 2nd Ed., New York: McGraw-Hill

    Google Scholar 

  • Zienkiewicz, O. C. (1977): The finite element method, 3rd Ed., London: McGraw-Hill

    Google Scholar 

  • Zienkiewicz, O. C.; Taylor, R. L.; Too, J. M. (1971): Reduced integration techniques in general analysis of plates and shells. Int. J. Num. Meth. Engg. 3, 275–290

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.N. Atluri, March 29, 1990

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alliney, S., Carnicer, R.S. A finite element model for Mindlin plates. Computational Mechanics 7, 299–310 (1991). https://doi.org/10.1007/BF00350160

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350160

Keywords

Navigation